

Comune di Città di Castello Provincia di Perugia

PIANO REGOLATORE GENERALE Variante generale

PRG - Parte Operativa n. 1

Sindaco
Luciano Bacchetta
Assessore all'Urbanistica
Rossella Cestini
Responsabile del Procedimento
ing. Federico Calderini

Coordinamento Scientifico Arch. Francesco Nigro

Coordinamento Tecnico Arch. Paolo Ghirelli

Ogget	tto		Elaborato		
Forr	na e conte	enuti del PRG-PO			
	azione di legati	inquadramento geologico	PC).c.0	1.2
3					
2					
1					
0	settembre 2018	Emissione per adozione			
REV.	DATA	DESCRIZIONE	REDATTO	APPROVATO	AUTORIZZATO
COD. [OCUMENTO			RAPPORTO	
		0 9 0 5 4 W G U 3 0 1			

INDICE

1.	PR	REMESSA	2
2.	DE	FINIZIONE DELLA PERICOLOSITA' DI BASE E DEGLI EVENTI DI RIFERIMENTO	5
3.	AS	SSETTO GEOLOGICO E GEOMORFOLOGICO GENERALE	20
4.	CA	ARTA DELLE MICROZONE OMOGENEE IN PROSPETTIVA SISMICA	22
5.	INI	DAGINI PREGRESSE: DATI GEOTECNICI E GEOFISICI	23
6.	AS	SPETTI CONOSCITIVI IN PROSPETTIVA SISMICA	24
	6.1	GEOLOGIA	24
	6.2	GEOMORFOLOGIA	26
	6.3	GEOTECNICA	29
	6.4	IDROGEOLOGIA	29
	6.5	IDRAULICA	29
	6.6	GEOFISICA	50
	6.7	CONCLUSIONI	50
7.	CA	ARTA DELLE INDAGINI	51
8.	CA	ARTA DELLE MICROZONE OMOGENEE	51
9.	LIV	/ELLO 2	52
1(0.	STANDARD E NORMATIVA DI RIFERIMENTO	53
1	1	ALLEGATI	54

GRUPPO DI LAVORO:

Geol. Fausto Pelicci Geol. Giacomo Schirò Geol. Gloria Ruspi

1. PREMESSA

La presente relazione accompagna ed illustra gli Studi a corredo della Parte Operativa del Piano Regolatore del Comune di Città di Castello.

L'Art. 110 del Regolamento Regionale 18 febbraio 2015, n.2, "Norme regolamentari attuative della legge regionale 21 gennaio 2015, n. 1 (Testo unico Governo del territorio e materie correlate)" prevede quanto segue per il PRG - parte operativa:

"1. Sono elaborati della parte operativa del PRG, limitatamente ai contenuti previsti all'articolo 22 del TU: [...] b) la relazione geologica, idrogeologica ed idraulica in prospettiva sismica e gli eventuali elementi di microzonazione sismica, di cui alla D.G.R. 377/2010, di pertinenza delle parti di territorio inerenti la parte operativa e l'indicazione del rinvio di tali elementi alla fase attuativa, relativa alle condizioni e previsioni territoriali, con almeno le cartografie tematiche [...]".

La vigente D.G.R. 377/2010 "Criteri per l'esecuzione degli studi di Microzonazione Sismica" stabilisce al punto 5 che per la Parte Operativa tali Studi, nelle aree soggette a trasformazione urbanistica o nelle aree da urbanizzare, debbano contenere un'indagine di Livello 2 di approfondimento (almeno per gli aspetti conoscitivi) nelle aree suscettibili di amplificazione e nelle aree suscettibili di instabilità di versante, di liquefazioni, di addensamenti e cedimenti differenziali, di deformazioni del suolo per faglie attive e capaci note da letteratura o a seguito di specifici studi settoriali.

Facendo riferimento a quanto espresso in un parere motivato dalla Regione Umbria ai Comuni di Fratta Todina e di Monte Castello Vibio (allegato in calce) si fa presente che "per quanto riguarda gli aspetti conoscitivi per il Livello 2, si deve far riferimento al capitolo 1.6.3.2 e 1.6.3.2.1 (degli "Indirizzi e criteri generali per la microzonazione sismica" del DPCN) con possibile esclusione delle quantificazioni numeriche dei fattori di amplificazione.

Per una maggiore comprensione si riporta quanto espresso al punto 1.6.3.2.1 Approfondimenti conoscitivi: "Operazione preliminare per la predisposizione del livello 2 è costituita dall'analisi della Carta delle microzone omogenee in prospettiva sismica (livello 1) al fine di individuare le aree con i maggiori livelli di incertezza e programmare eventuali nuove indagini. Tale analisi dovrà prendere in considerazione le caratteristiche morfologiche, litostratigrafiche e geotecniche delle diverse zone e integrarle con i dati geologici, geomorfologici, geologico-tecnici, e geotecnici, già raccolti e valutati. La localizzazione delle indagini (pregresse e di nuova esecuzione) sarà riportata nella Carta delle indagini. In tale carta verranno anche segnalate le aree dove si ritiene più importante la previsione di ulteriori indagini per la predisposizione di un eventuale livello 3, ovvero quelle in cui le incertezze sui risultati di questo livello di approfondimento sono più evidenti".

Al Comune di Fratta Todina Sede

Al Comune di Monte Castello di Vibio Sede

Regione Umbria

Ciunta Rogionale

REGIONE UMBRIA - Giunta regionale -

Prof. Usella del 01/07/2013 nr.0090803 Classifica: XIV. 13

Oggetto: Risposta alla nota n. 1528 riguardante "Formazione P.R.G. intercomunale Parte Operativa-D.G.R. 377/2010-Richiesta Parere".

In riferimento a quanto richiesto con la nota del 26 marzo di cui all'oggetto, riguardante le indagini di microzonazione sismica di livello 2 (DGR n. 377/10) per la formazione del P.R.G. intercomunale parte operativa, si formiscono le seguenti indicazioni

A-II punto 5 della DGR n. 377/10 specifica i livelli di approfondimento degli studi di microzonazione sismica per importanza degli strumenti urbanistici e precisamente:

- 1. parte strutturale PRG:
- 2. parte operativa PRG;
- 3. strumento attuativo.

Ad ogni ordine di importanza dello strumento urbanistico viene associato il livello di approfondimento degli studi di microzonazione sismica (di seguito indicati con MS):

- parte strutturale PRG-livello 1 MS;
- parte operativa PRG-livello 2 MS (almeno per gli aspetti conoscitivi);
- strumento attuativo-livello 3 di approfondimento, se necessario in relazione alla complessità del fenomeno o importanza dell'opera e se previsto ed indicato in precedenti livelli 1 e 2 di approfondimento.

Si fa presente inoltre che le indagini di microzonazione sismica di livello 2 (almeno per gli aspetti conoscitivi) sono previste per la parte operativa solo per le aree urbanizzate soggette a tractormazione urbanistica e da urbanizzare.

Sempre in riferimento alle indagini di microzonazione sismica si precisa inoltre che, per quanto riguarda gli aspetti conoscitivi per il livello 2, si deve far riferimento al capitolo 1.6.3.2 e 1.6.3.2.1 con possibile esclusione delle quantificazioni numeriche del fattori di amplificazione.

B-Al punto 6 della DGR n. 377/10 sono specificati i livelli di approfondimento degli studi di MS sulle aree destinate ad ospitare edifici ed opere infrastrutturali di interesse strategico o rilevanti sulla base delle definizioni espresse nella DGR n. 1700/03 e s.m.i.

C-Per ciò che attiene l'obbligatorietà dell'esecuzione del livello 3 di approfondimento, per i casi indicati al punto 6 della DGR n. 377/10, si richiamano i contonuti degli "Indirizzi o ortori per la MS" laddove al punto 1.6.3.3 è espressamente specificato che sono svolti in situazioni geologiche e geotecniche complesse o suscettibili di instabilità del suolo. Tale condizione dovo risultare da precedenti indicazioni collegate ai livelli 2 di approfondimento e da studi e relazioni, che in assenza di livello 2, attestino la necessità di tale approfondimento per l'impossibilità oggettiva di applicare le conoscenze esistenti o per la presenza di frane, situazioni suscettibili di liquefazione, presenza di faglie attive e capaci, possibilità di eccezionali fenomeni di addensamento e consolidamento.

Cordiali Saluti

Il Dirigente di Servizio Dott. Arnaldo Boscherini GIUNTA REGIONALE

Direzione Regionale Proprammaziono, Innovazione e Compositività dell'Imbria

Servizio Geologico o Signico

Dirigente; Dott. Arnaldo Boscherini

REGIONE UMBRIA Plazza Pertigiani, 1 05121 PERUGIA

TEL, 075 5042702 FAX 078 5042700 aboscherin@regiona.umbris.it

Sezione † Caratteristiche geologiche Del Territorio

Responsabile Dott Andrea Motti

REGIONE UMBRIA Plazza Perligiani, 1 06121 PERLIGIA

YEL 076 5042770 FAX 076 5042750 amottigregione umpria it

> www.regione.umbria.it Pagina 1 di 1

La Parte Strutturale del PRG contiene per tutto il territorio comunale (così come richiesto dalla vigente D.G.R. 377/2010) la Carta delle microzone omogenee in prospettiva sismica, realizzata acquisendo la cartografia regionale secondo quanto espresso al Punto 3 della D.G.R. che delibera "di ritenere le carte di pericolosità sismica locale in scala 1:10.000, prodotte ed aggiornate dai competenti Servizi regionali (approvate con gli atti di cui all'allegato A), equivalenti al livello 1 di approfondimento (Carte delle microzone omogenee in prospettiva sismica) degli "Indirizzi e criteri generali per la microzonazione sismica".

Alla luce di quanto esposto si è pertanto deciso di non effettuare nuove prove geognostiche sparse sul territorio, eccessivamente onerose per le casse comunali, considerando che in fase di successivo piano attuativo sarà comunque necessario approfondire le conoscenze per ogni sito mediante la realizzazione di una specifica campagna di indagine, sulla base di quanto espresso dai progettisti e soggetti attuatori.

Si è pertanto proceduto alla raccolta delle indagini già esistenti nell'intorno delle aree di interesse al fine di corredare alla Carta delle MOPS della Regione Umbria una Carta delle Indagini Pregresse.

La presente relazione descrive inoltre, a piccola scala, i dati da ricercare e le problematiche che si andranno ad affrontare per arrivare alla quantificazione numerica del Livello 2, o superiore, attenendosi a quanto prescritto nella normativa vigente.

Quanto riportato in questa Relazione costituisce quindi, assieme agli allegati cartografici e alle diagrafie prodotte, la base di conoscenza propedeutica al livello 2 (aspetti conoscitivi).

Il presente studio è stato quindi così strutturato:

- acquisizione dei perimetri delle aree soggette a trasformazione urbanistica e delle aree da urbanizzare da Cooprogetti;
- acquisizione delle indagini esistenti negli archivi comunali fornite dagli Uffici Tecnico in formato pdf nell'intorno di tali aree;
- analisi e georeferenziazione delle indagini acquisite;
- acquisizione e georeferenziazione nello stesso database delle indagini ricevute dal Comune, delle indagini contenute nei precedenti studi di microzonazione eseguiti nel territorio comunale e delle indagini reperibili nella "Banca dati delle indagini geognostiche e geofisiche per Google Earth" della Regione Umbria;
- redazione della "Carta delle indagini" contenente le indagini pregresse raccolte;
- stesura delle "Carta delle MOPS" in scala 1:10'000;
- stesura della relazione generale.

2. DEFINIZIONE DELLA PERICOLOSITA' DI BASE E DEGLI EVENTI DI RIFERIMENTO

Gli effetti locali prodotti da eventi sismici assumono una diversa rilevanza in funzione della sismicità di base del territorio comunale e della relativa accelerazione di ancoraggio dello spettro di risposta elastico.

Il comune di Città di Castello, ai sensi della D.G.R. del 18 settembre 2012, n. 1111 "Aggiornamento della classificazione sismica del territorio regionale dell'Umbria", ricade in zona sismica 2.

Il valore massimo di a_g, espresso come frazione dell'accelerazione di gravità g, da adottare nella zona sismica II è pari a 0.25g.

In riferimento a quanto espresso nella stessa D.G.R. 1111/2012 per il comune il valore di riferimento è 0.229104 g.

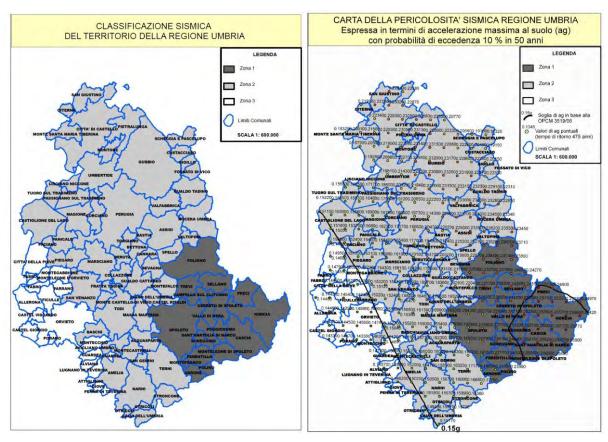


Figura 1: classificazione sismica del territorio della Regione Umbria

L'analisi della Cartografia relativa alla Zonazione Sismogenetica ZS9 (2004) evidenzia che il territorio comunale è interamente (ad esclusione dell'isola amministrativa comunque non interessata dal PO) suddiviso tra a Zona 919 e la Zona 920.

In particolare nella zona 919 (Appennino Umbro) sono previste magnitudo (MW [Magnitudo momento sismico]) massime attese pari a 6.37, mentre nella zona 920 (Val di Chiana - Ciociaria) sono previste magnitudo (MW [Magnitudo momento sismico]) massime attese pari a 6.14. Tali valori sono stati tratti dal rapporto redatto dal Gruppo di Lavoro MPS (Redazione della mappa di pericolosità sismica prevista dall'Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp. + 5 appendici).

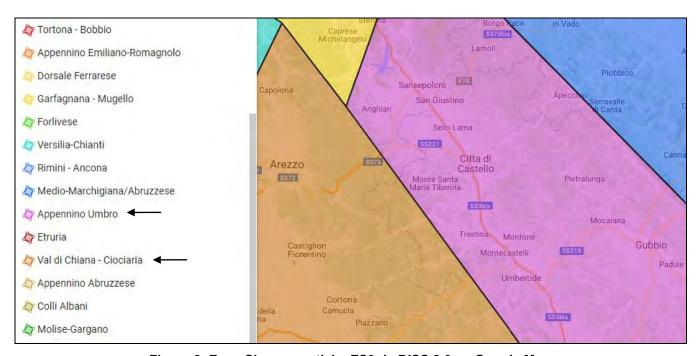


Figura 2: Zone Sismogenetiche ZS9 da DISS 2.0 su Google Map

Di seguito un estratto del CPTI15 (https://emidius.mi.ingv.it/CPTI15-DBMI15/) che fornisce dati parametrici omogenei, sia macrosismici, sia strumentali, relativi ai terremoti con intensità massima ≥ 5 o magnitudo ≥ 4.0 d'interesse per l'Italia nella finestra temporale 1000-2014), da cui si evince la distribuzione dei principali terremoti in territorio umbro, con l'esclusione dei più recenti tra cui quelli che hanno coinvolto dall'agosto 2016 il territorio nursino al confine con Lazio e Marche.

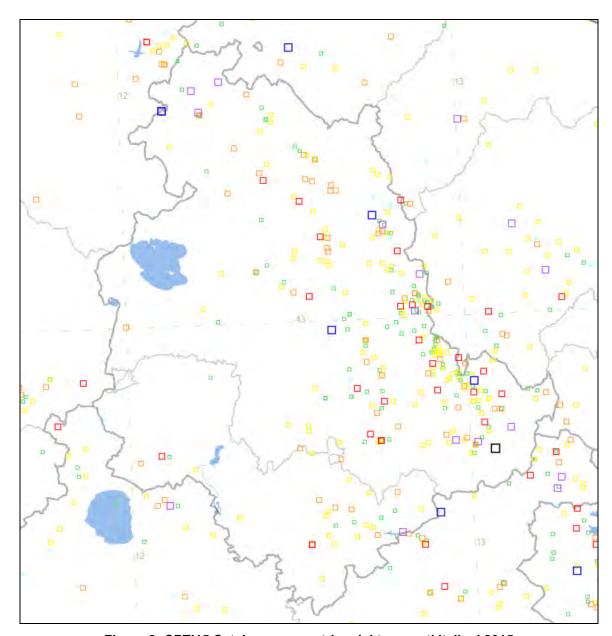
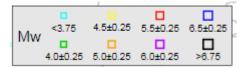



Figura 3: CPTI15 Catalogo parametrico dei terremoti italiani 2015

Il catalogo è stato costruito con la serie storica dei terremoti italiani, di cui si riporta l'estratto tabellato per la sola Città di Città di Castello, costituito di ben 94 eventi, di cui i principali sono riportati nel successivo diagramma.

				3.03	1915 03 26 23 37	Perugino 40	
fetti	Reported eart	thquakesIn occasione	del terremoto del	5.05	1916 05 17 12 50		6
Int.Int.	Gi Ho Mi SeYear Mo Da	Epic NMDPNMDP	IoIo MwMw	5.05	1916 05 17 12 50	Riminese 132 Riminese 257	8 5
8.58-9	1352 12 25	Alta Valt7	9 6.31	7.07	1917 04 26 09 35 5	Riminese 257 Alta Valt134	8 5 09-ott 5
8.58-9	1389 10 18	Alta Valt9	9 6.03		1917 04 26 09 35 5		
8.58-9	1458 04 26 12 15	Alta Valt5	08-set 5.8	5.05	1918 03 22 04 43 2	Alta Valt7	4 4
	1458 05 01 00 35			3.03	1919 11 10 15 12 2	Appenninc 187	9 5
.07		Alta Valt2	6 4.63	5.05	1919 10 25 13 51	Mugello 565 Alta Valt30	6 5
.08	1558 02 08 18 15	Alta Valt5	7 5.1	4.04	1920 09 07 05 55 4	Garfagnar 750	10 6
.04	<u>1559 04 11 20</u>	Alta Valt3	06-lug 4.86	3.03	1924 01 02 08 55 1	Senigalli76	07-ago 5
5.06	1668 08 22	Alta Valt2	5 4.16	5.05	1927 11 30 02 58 2	Bacino di 18	07-ago 5 5 4
06.56-7	1690 03 22 21 50	Alta Valt1	06-lug 4.86	5.05	1927 12 01 09 55 3	Bacino di 13	05-giu 4
4.54-5	<u>1693 02 22 08 30</u>	Alta Valt2	5 4.16	4.04	1930 10 30 07 13	Senigalli 268	8 5
3.9F	<u>1694 04 08</u>	Alta Valt6	07-ago 5.4	3.03	1936 10 18 03 10	Alpago Ca 269	9 6
5.55-6	1725 04 17 13	Appenninc 8	05-giu 4.8	6.06	1948 06 13 06 33 3	Alta Valt142	7.5
.05	1725 04 18 13	Appenninc1	5 4.16	4.04	1950 09 05 04 08	Gran Sass386	8 5.
3.9F	1731 03 29	Alta Valt9	6 4.76	01.0NF	1957 04 30 06 05 0	Alta Valt57	5 4.
6.56-7	1751 07 27 01	Appenninc 66	10 6.38	04.54-5	1960 04 15 02 45 1	Montefelt 30	05-giu 4.
.06	1752 07 13 21 40	Appenninc 11	5 4.61	04.54-5	1961 03 23 01 01	Bacino di 21	7 4
3.9F	1752 08	Appenninc1	4 3.7	3.03	1963 02 03 10 05	Pietralum 3	4 3
.07	1781 06 03	Cagliese 157	10 6.51	5.05	1965 08 04 11 49 5	Alta Valt 44	5 4
3.9F	1783 06 29	Casentinc 4	05-giu 4.4	3.03	1969 08 11 13 55	Lago Tras 46	7 4
.08	1789 09 30 10	Alta Valt73	9 5.89	3.03	1971 02 11 18 49 2	Valle del71	6 4
3.9F	1792 07 20	Ternano 9	06-lug 5.06	03.53-4	1971 02 12 04 54 5	Valle del 47	7 4
.04	1828 04 11 22 25	Appenninc 22	05-qiu 4.93	3.03	1972 02 04 02 42 1	Costa anc 75	4.
.04	1832 01 13 13	Valle Umk 101	10 6.43	5.05	1973 04 19 17 41 3	Pietralum 22	7 4.
	1854 02 12 05			3.03	1973 12 30 06 30 3	Valle del16	07-ago 5.
.05		Valle Umi: 21	8 5.57	03.9F	1976 05 06 20	Friuli 770	09-ott 6.
7.57-8	1865 09 21 20 50	Alta Valt5	7 5.1	4.04	1979 09 19 21 35 3	Valnerina 694	08-set 5
5.55-6	<u>រី873 03 12 20 04</u>	Appenninc 196	8 5.85	4.04	1980 11 23 18 34 5	Irpinia-E1394	10 6
1.ONF	1874 10 07	Imolese 60	7 4.96	01.0NF	1983 11 09 16 29 5	Parmense 850	06-lug 5
.02	1875 03 17 23 51	Costa rom144	8 5.74	6.06	1984 04 29 05 02 5	Umbria se709	7 5.
.03	1881 09 28	Cesena 24	06-lug 4.71	01.ONF	1986 10 13 05 10 0	Monti Sik 322	05-giu 4.
.02	1885 02 26 20 48	Pianura F78	6 5.01	03.53-4	1989 07 09 03 54 3	Montefelt 48	5 4
.02	1887 02 23 05 21 5	Liguria c1511	9 6.27	3.03	1990 05 08 22 33 1	Alta Valt 64	5 3.
2.52-3	1887 05 26	Jesi 19	5 4.44	4.04	1993 01 17 10 51 2	Alta Valt76	5 4.
4.54-5	1891 12 08	Alta Valt 24	5 4.34	3.03	1993 06 05 19 16 1	Valle del 326	6 4.
.05	1892 11 21	Alta Valt22	05-giu 4.25	5.05	1997 09 26 00 33 1	Appenninc 760	07-ago 5.
.03	1895 05 18 19 55 1	Fiorentin 401	8 5.5	6.06	<u>1997 09 26 09 40 2</u>	Appenninc 869	08-set 5.
4.54-5	1897 06 24 19 04	Apecchio 27	5 4.34	4.04	<u>1997 10 02 19 38 0</u>	Alta Valt55	4.
.07	1897 12 18 07 24 2	Alta Valt132	7 5.09	04.54-5	<u>1997 10 03 08 55 2</u>	Appenninc 490	5.
4.54-5	1909 01 13 00 45	Emilia Rc 867	06-lug 5.36	04.54-5	<u>1997 10 06 23 24 5</u>	Appenninc 437	5.
.04	1909 08 25 00 22	Crete Ser 259	07-ago 5.34	04.54-5	1997 10 14 15 23 1	Valnerina 786	5.
.04	1911 02 19 07 18 3	Forlivese 181	7 5.26	04.54-5	1998 04 05 15 52 2	Appenninc 395	4.
.03	1911 09 13 22 29 0	Chianti 115	7 5.26	03.53-4	් <u>2000 06 18 07 42 0</u>	Pianura e304	05-giu 4.
	0			04.54-5	2000 06 22 12 16 3	Bacino di 107	5 4.
3.03	1911 09 13 22 35 1	Chianti 13	04-mag 4.35	04.54-5	් <u>2001 11 26 00 56 5</u>	Casentinc 211	05-giu 4.
3.9F	1913 08 09 01 45	Pietralum 12	04-mag 3.93	01.0NF	් <u>2003 12 07 10 20 3</u>	Forlivese 165	5 4.
1.04	1914 10 27 09 22	Lucchesia 660	7 5.63	01.0NF	ි <u>2005 12 15 13 28 3</u>	Val Nerin 350	5 4.
05.55-6	<u>1915 01 13 06 52 4</u>	Marsica 1041	11 7.08	01.0NF	2006 10 21 07 04 1	Anconetar 287	5 4.

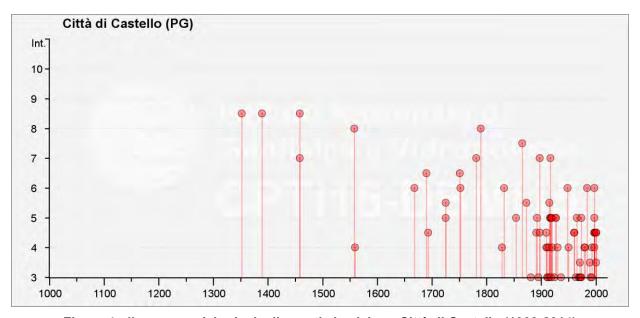


Figura 4: diagramma dei principali eventi sismici per Città di Castello (1000-2014)

Riguardo ai dati di Disaggregazione della pericolosità sismica per il sito, sono stati estratti dal portale internet dell'INGV i valori riportati nella Mappa interattiva di Pericolosità Sismica e che, a puro titolo di inquadramento, sono riportati nelle seguenti immagini e tabelle con probabilità di eccedenza al 10%, al 50% e all'81% in 50 anni (percentile 50) per il Capoluogo.

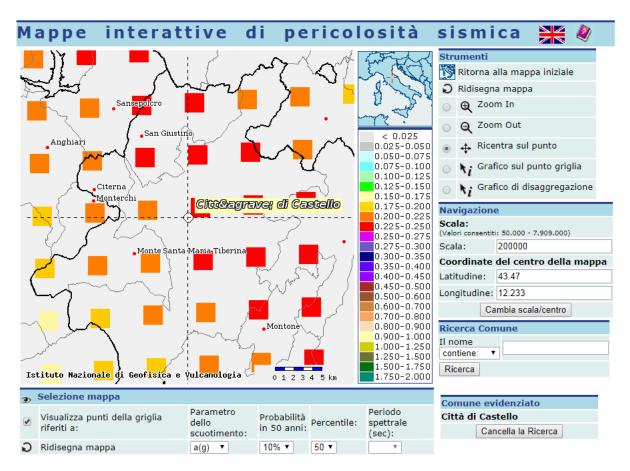
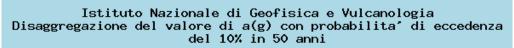
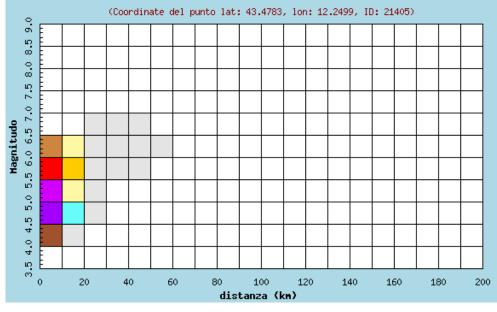




Figura 5: disaggregazione della pericolosità sismica probabilità di eccedenza al 10%, in 50 anni (percentile 50)

	Disaggregazione del valore di a(g) con probabilita' di eccedenza del 10% in 50 anni (Coordinate del punto lat: 43.4783, lon: 12.2499, ID: 21405)											
Distanza in km	Magnitudo											
	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8.5-9.0	
0-10	0.000	10.200	25.800	22.200	16.000	8.200	0.000	0.000	0.000	0.000	0.000	
10-20	0.000	0.177	1.780	4.050	5.360	4.370	0.000	0.000	0.000	0.000	0.000	
20-30	0.000	0.000	0.000	0.116	0.614	0.850	0.008	0.000	0.000	0.000	0.000	
30-40	0.000	0.000	0.000	0.000	0.041	0.184	0.006	0.000	0.000	0.000	0.000	
40-50	0.000	0.000	0.000	0.000	0.000	0.026	0.001	0.000	0.000	0.000	0.000	
50-60	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	
60-70	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
70-80	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
80-90	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
90-100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
100-110	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
110-120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
120-130	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
130-140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
140-150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
150-160	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
160-170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
170-180	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
180-190	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
190-200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Valori medi										
Magnitudo	Magnitudo Distanza Epsilon									
5.260	6.420	1.050								

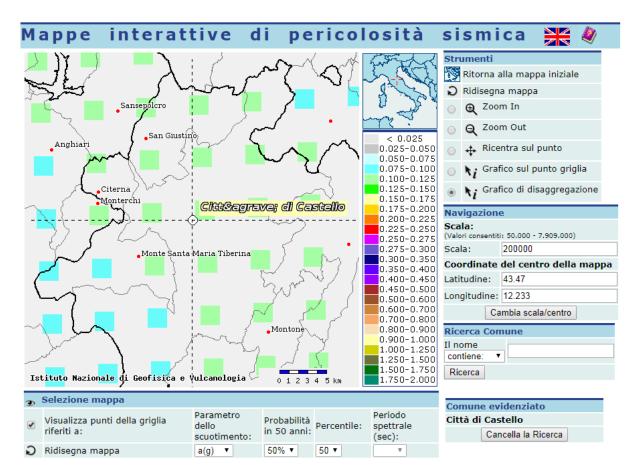
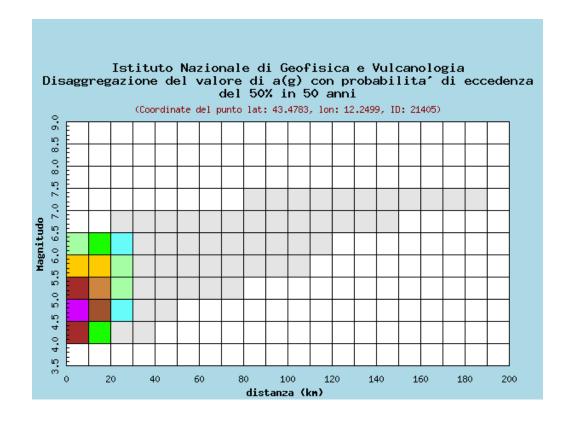



Figura 6: disaggregazione della pericolosità sismica probabilità di eccedenza al 50%, in 50 anni (percentile 50)

	Disaggregazione del valore di a(g) con probabilita' di eccedenza del 50% in 50 anni (Coordinate del punto lat: 43.4783, lon: 12.2499, ID: 21405)											
Distanza in km	Magnitudo											
	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8.5-9.0	
0-10	0.000	12.100	22.400	12.800	6.320	2.410	0.000	0.000	0.000	0.000	0.000	
10-20	0.000	3.760	9.880	8.790	6.270	3.220	0.000	0.000	0.000	0.000	0.000	
20-30	0.000	0.393	1.720	2.260	2.120	1.450	0.011	0.000	0.000	0.000	0.000	
30-40	0.000	0.005	0.228	0.659	0.812	0.690	0.014	0.000	0.000	0.000	0.000	
40-50	0.000	0.000	0.011	0.191	0.369	0.361	0.008	0.000	0.000	0.000	0.000	
50-60	0.000	0.000	0.000	0.043	0.178	0.181	0.004	0.000	0.000	0.000	0.000	
60-70	0.000	0.000	0.000	0.010	0.091	0.082	0.002	0.000	0.000	0.000	0.000	
70-80	0.000	0.000	0.000	0.001	0.038	0.040	0.001	0.000	0.000	0.000	0.000	
80-90	0.000	0.000	0.000	0.000	0.013	0.019	0.002	0.002	0.000	0.000	0.000	
90-100	0.000	0.000	0.000	0.000	0.002	0.008	0.016	0.018	0.000	0.000	0.000	
100-110	0.000	0.000	0.000	0.000	0.000	0.002	0.012	0.016	0.000	0.000	0.000	
110-120	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.011	0.000	0.000	0.000	
120-130	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.007	0.000	0.000	0.000	
130-140	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.005	0.000	0.000	0.000	
140-150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000	
150-160	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	
160-170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	
170-180	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
180-190	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
190-200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Valori medi								
Magnitudo Distanza Epsilon								
5.090	11.300	0.548						

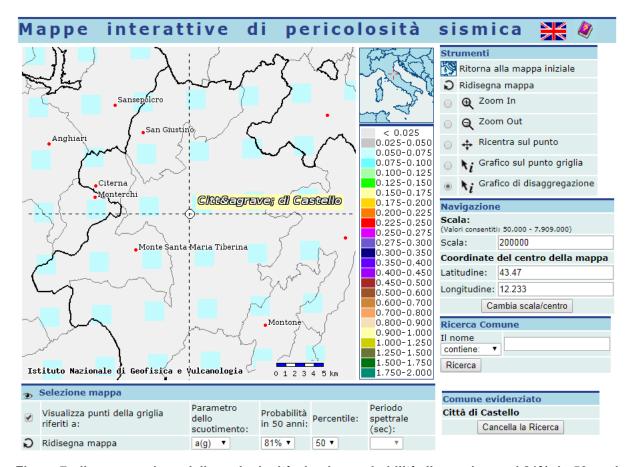
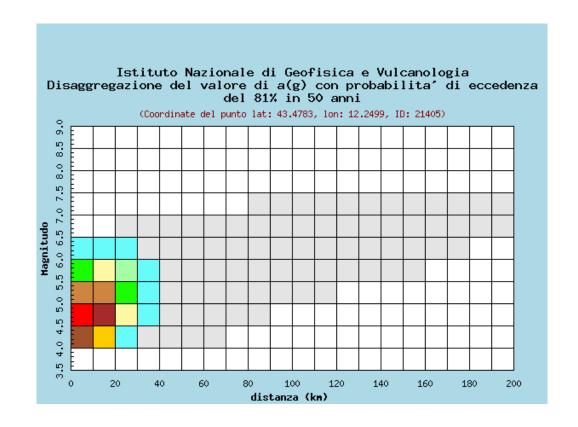



Figura 7: disaggregazione della pericolosità sismica probabilità di eccedenza al 81%, in 50 anni (percentile 50)

	Disaggregazione del valore di a(g) con probabilita' di eccedenza del 81% in 50 anni (Coordinate del punto lat: 43.4783, lon: 12.2499, ID: 21405)											
Distanza in km	Magnitudo											
	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8.5-9.0	
0-10	0.000	9.860	15.700	7.360	3.100	1.060	0.000	0.000	0.000	0.000	0.000	
10-20	0.000	6.630	13.600	8.850	4.780	1.980	0.000	0.000	0.000	0.000	0.000	
20-30	0.000	1.820	4.500	3.780	2.500	1.290	0.009	0.000	0.000	0.000	0.000	
30-40	0.000	0.510	1.610	1.710	1.340	0.825	0.014	0.000	0.000	0.000	0.000	
40-50	0.000	0.104	0.619	0.886	0.822	0.556	0.010	0.000	0.000	0.000	0.000	
50-60	0.000	0.009	0.215	0.489	0.536	0.350	0.006	0.000	0.000	0.000	0.000	
60-70	0.000	0.000	0.069	0.285	0.382	0.201	0.004	0.000	0.000	0.000	0.000	
70-80	0.000	0.000	0.016	0.146	0.256	0.127	0.002	0.000	0.000	0.000	0.000	
80-90	0.000	0.000	0.002	0.065	0.165	0.086	0.006	0.003	0.000	0.000	0.000	
90-100	0.000	0.000	0.000	0.018	0.083	0.067	0.047	0.034	0.000	0.000	0.000	
100-110	0.000	0.000	0.000	0.004	0.040	0.046	0.044	0.034	0.000	0.000	0.000	
110-120	0.000	0.000	0.000	0.001	0.019	0.029	0.031	0.027	0.000	0.000	0.000	
120-130	0.000	0.000	0.000	0.000	0.009	0.018	0.023	0.021	0.000	0.000	0.000	
130-140	0.000	0.000	0.000	0.000	0.004	0.011	0.016	0.016	0.000	0.000	0.000	
140-150	0.000	0.000	0.000	0.000	0.001	0.006	0.012	0.012	0.000	0.000	0.000	
150-160	0.000	0.000	0.000	0.000	0.000	0.003	0.008	0.009	0.000	0.000	0.000	
160-170	0.000	0.000	0.000	0.000	0.000	0.001	0.006	0.007	0.000	0.000	0.000	
170-180	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.006	0.000	0.000	0.000	
180-190	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.004	0.000	0.000	0.000	
190-200	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.000	0.000	0.000	
Valori	madi											

 Valori medi

 Magnitudo
 Distanza
 Epsilon

 5.030
 17.100
 0.328

Consultando il progetto DISS dell'INGV emerge un elemento di faglia significativo ed in particolare si segnalano le seguenti faglie:

- ITCS037: Mugello-Citta' di Castello-Leonessa;
- ITCS041 Sansepolcro.

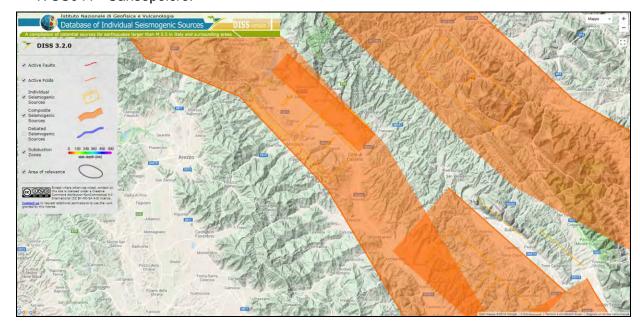


Figura 8: progetto DISS

COMMENTARY V

PICTURES V

REFERENCES V

USER COMMENTS

GENERAL INFORMATION

DISS-ID ITCS037

Name Mugello-Citta' di Castello-Leonessa

Compiler(s) Burrato P.(1), Vannoli P.(1), Fracassi U.(1)
Contributor(s) Burrato P.(1), Vannoli P.(1), Fracassi U.(1)

Affiliation(s)

1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e

Tettonofisica; Via di Vigna Murata, 605, 00143 Roma, Italy

 Created
 08-Jan-2005

 Updated
 30-Apr-2010

Display map ...

8

Related sources ITIS063 ITIS064

ITIS086 ITIS08

ITIS060 ITIS061 ITIS062 ITIS076

PARAMETRIC INFORMATION

PARAMETER		QUALITY	EVIDENCE
Min depth [km]	0.5	EJ	Inferred from regional tectonic considerations.
Max depth [km]	8.0	EJ	Inferred from regional tectonic considerations.
Strike [deg] min max	280330	EJ	Inferred from regional geological data.
Dip [deg] min max	2540	EJ	Inferred from regional geological data.
Rake [deg] min max	260280	EJ	Inferred from regional geological data.
Slip Rate [mm/y] min max	0.11.0	EJ	Unknown, values assumed from geodynamic constraints.
Max Magnitude [Mw]	6.2	OD	Derived from maximum magnitude of associated individual source(s).

LD=LITERATURE DATA; OD=ORIGINAL DATA; ER=EMPIRICAL RELATIONSHIP; AR=ANALYTICAL RELATIONSHIP; EJ=EXPERT JUDGEMENT;

ACTIVE FAULTS

ACTIVE FOLDS

COMMENTARY

COMMENTS

This composite source runs for 200+ km along the backbone of the Northern Apennines, from ca. the latitude of the city of Pistoia (to the northwest) to the upper Nera R. valley (to the southeast), and forms the core of the Etrurian Fault System extensional belt. This source is a complex, low-angle shallow fault array that marks the western extensional border of the Northern Apennines.

Historical and instrumental catalogues (Boschi et al., 2000; Gruppo di Lavoro CPTI, 2004; Pondrelli et al., 2006; Guidoboni et al., 2007) show a dense intermediate (4.5 < Mw 5.0) to damaging seismicity within the area, particularly in the northwestern and southeastern sectors. Moreover, the key damaging and destructive earthquakes have occurred on (from northwest to southeast): 13 June 1542 (Mw 5.9, Mugello), 29 June 1919 (Mw 6.2, Mugello), 26 April 1917 (Mw 5.8, Monterchi-Citerna), 25 December 1352 (Mw 6.0, Monterchi), 26 April 1458 (Mw 5.9, Città di Castello), 13 Jan 1832 (Mw 5.8, Foligno), 15 Sep 1878 (Mw 5.5, Montefalco), and 5 June 1767 (Mw 5.4, Spoletino).

The Etrurian Fault System (also referred to in the literature as the "Altotiberina Fault") is a low-angle normal fault of regional extents, recognised by means of field evidence (Boncio et al., 1998) and subsurface data (Anelli et al., 1994; Barchi et al., 1998). The Etrurian Fault System s.s. reaches depths of 12-14 km beneath the Umbria-Marche fold-and-thrust belt (Boncio et al., 1998 and 2000).

The numerous geological and seismological studies indicate the activity of the extensional belt, suggesting its role as the basal detachment of the W-dipping seismogenic normal faults found to the east. In particular, Boncio et al. (2000b) propose that (a) the Etrurian Fault System exerts a structural control on the lower depth of the seismogenic layer in this region, and that (b) its shallowest hanging wall block generates frequent seismic swarms and small magnitude earthquakes.

Some segments of this source have been associated with the key earthquakes of this region. For an in-depth analysis of seismogenesis in this region, the reader can refer to the individual sources in this Database.

The strike of this source was based on that of the mapped structures (N280 $^{\circ}$ -330 $^{\circ}$). The dip was based on subsurface data and geometrical considerations (25 $^{\circ}$ -40 $^{\circ}$). The rake represents pure extension, based on geological observations (260-280). The minimum and maximum depth were based on subsurface data and on geometrical considerations (0.5 and 8.0 km, respectively). The slip rate was inferred from geological observations in adjacent structures that share the same tectonic environment with the Mugello-Sansepolcro-Trevi source (0.1 – 1.0 mm/y). The maximum magnitude was taken from the largest damaging earthquake associated with the area (Mw 6.2).

PICTURES

Broader structural setting of the Mugello-Sansepolcro-Trevi seismogenic source Structural map of the major structures of the Mugello-Sansepolcro-Trevi source Seismotectonic model of the broader Mugello-Sansepolcro-Trevi source

COMMENTARY V

PICTURES V

References Y

USER COMMENTS

GENERAL INFORMATION

DISS-ID ITCS041
Name Sansepolcro

Compiler(s) Burrato P.(1), Mariano S.(1)
Contributor(s) Burrato P.(1), Mariano S.(1)

Affiliation(s)

1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00143 Roma, Italy

 Created
 08-Jan-2005

 Undated
 24-Sep-2007

Updated 24-Sep-2007

Display map ...

1

Related sources ITIS065

PARAMETRIC INFORMATION

PARAMETER		QUALITY	EVIDENCE
Min depth [km]	1.0	LD	Based on geological data from various authors.
Max depth [km]	5.0	LD	Based on geological data from various authors.
Strike [deg] min max	130140	LD	Based on geological data from various authors.
Dip [deg] min max	4050	LD	Based on geological data from various authors.
Rake [deg] min max	260280	EJ	Inferred from regional geological data.
Slip Rate [mm/y] min max	0.11.0	EJ	Unknown, values assumed from geodynamic constraints.
Max Magnitude [Mw]	5.5	OD	Derived from maximum magnitude of associated individual source(s).

LD=Literature Data; OD=Original Data; ER=Empirical Relationship; AR=Analytical Relationship; EJ=Expert Judgement;

ACTIVE FAULTS

ACTIVE FOLDS

COMMENTARY

COMMENTS

This composite source straddles a short section of the middle Tever R. valley along the backbone of the Northern Apennines in the Sansepolcro Basin, east of the city of Arezzo. This is a SW-dipping, local antithetic of the Etrurian Fault System extensional belt.

Historical and instrumental catalogues (Boschi et al., 2000; Gruppo di Lavoro CPTI, 2004; Pondrelli et al., 2006; Guidoboni et al., 2007) show an intermediate (4.5 < Mw 5.0) to damaging seismicity within the area, including the 1270 A.D. (Mw 5.4, Sansepolcro) earthquake. Moreover, the key damaging and destructive events have occurred in the southern sector of the source on: 18 October 1389 (Mw 6.0, Bocca Serriola), 26 April 1458 (Mw 5.9, Città di Castello), and 30 September 1789 (Mw 5.9, Val Tiberina).

This source is an antithetic of the Etrurian Fault System (also referred to in the literature as the "Altotiberina Fault"), low-angle normal fault of regional extents, recognised by means of field evidence (Boncio et al., 1998) and subsurface data (Anelli et al., 1994; Barchi et al., 1998). The Etrurian Fault System s.s. reaches depths of 12-14 km beneath the Umbria-Marche fold-and-thrust belt (Boncio et al., 1998 and 2000). The numerous geological and seismological studies indicate the

activity of the extensional belt, suggesting its role as the basal detachment of the W-dipping seismogenic normal faults found to the east like this composite source. In particular, Boncio et al. (2000b) propose that (a) the Etrurian Fault System exerts a structural control on the lower depth of the seismogenic layer in this region, and that (b) its shallowest hanging wall block generates frequent seismic swarms and small magnitude earthquakes.

A segment of this source has been associated with the 1789 earthquake. For an in-depth analysis of seismogenesis in this region, the reader can refer to the individual source in this Database.

The strike of this source was based on that of the mapped structures (N130°-140°). The dip was based on subsurface data and geometrical considerations ($40^{\circ}-50^{\circ}$). The rake represents pure extension, based on geological observations (260-280). The minimum and maximum depth were based on subsurface data and on geometrical considerations (1.0 and 5.0 km, respectively). The slip rate was inferred from geological observations in adjacent structures that share the same tectonic environment with the Selci-Lama source (0.1-1.0 mm/y). The maximum magnitude was taken from that of the largest Individual Source associated with the Sansepolocro Composite Source (Mw 5.5).

Al fine di definire se i lineamenti rilevati sono da ritenersi potenzialmente "Faglia attiva o capace" si è fatto riferimento allo studio condotto dal Servizio Geologico d'Italia - ISPRA e denominato progetto ITHACA (ITaly HAzard from CApable faults). Il progetto si occupa in modo particolare delle faglie capaci, definite come faglie che potenzialmente possono creare deformazione in superficie.

La successiva figura raffronta mediante supporto WMS del progetto ITHACA l'ubicazione della faglia considerata potenzialmente capace con i terreni interessati da trasformazione.



Figura 9: faglie progetto Ithaca e terreni interessati dal PO

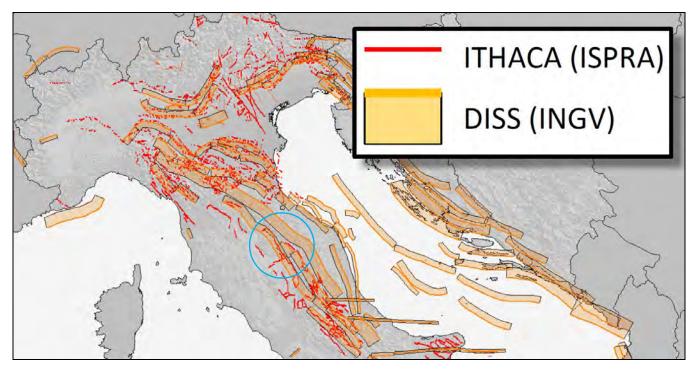


Figura 10: confronto tra studi che individuano faglie sismogenetiche e faglie capaci

Così come ricordato nello stesso sito ufficiale dell'ISPRA (http://sgi.isprambiente.it/) il Catalogo ITHACA "fornisce una prima indicazione sull'eventuale presenza di faglie attive e capaci in un determinato territorio, ma non può essere comunque utilizzato per la loro caratterizzazione di dettaglio. Ciò vale in particolar modo per gli studi di microzonazione sismica".

"ITHACA è in continuo aggiornamento e non può mai considerarsi completo o definitivo; non rappresenta la totalità delle faglie capaci potenzialmente presenti sul territorio nazionale, ma solo quelle per le quali esiste uno studio, anche di livello minimo e quindi un riferimento bibliografico".

3. ASSETTO GEOLOGICO E GEOMORFOLOGICO GENERALE

Come già evidenziato nello studio geologico generale allegato alla Parte Strutturale, nel Comune di Città di Castello affiorano terreni appartenenti alle successioni geologiche Umbre, Marchigiane, Romagnole e Toscane. La presenza di litotipi appartenenti a diversi bacini regionali testimonia l'intensa attività tettonica che ha caratterizzato l'area, con accavallamenti, piegamenti e traslazioni delle formazioni litoidi lungo lineamenti tettonici sia diretti che inversi.

Nel territorio comunale l'azione tettonica, in combinazione con gli agenti atmosferici, ha generato a due principali ambiti strutturali collegati a tre principali morfotipi: il graben su cui si è formato il Lago Tiberino e successivamente la pianura alluvionale del F. Tevere e gli alti strutturali che corrispondono alle attuali morfologie montuoso-collinari.

Nella seguente tabella, già presentata nella Parte Strutturale, il territorio comunale è stato suddiviso in unità litologiche, a cui sono associate con buona relazione di corrispondenza le tre principali unità di paesaggio:

/alle del F. Tevere, del T. Sovara, del T. Cerfone,	
lel T. Regnano, del T. Vaschi, del T. Soara, del T. Aggia, del T. Nestore, del T. Minima, del T. Seano	Pianura e di valle
Nella porzione centrale del comune, sulle colline poste in dx e sx idrografica del F. Tevere.	Collinare
Rilievi collinari di SO delimitati dalle valli dei orrenti: Nestore-Minima, Minima-Seano, Seanomite comunale meridionale.	
n) Rilievo di alta collina delimitato dalla valle del corrente Nestore ed il limite comunale occidentale. n) Versanti della valle del T. Scarzola nel tratto a didosso del limite comunale Nord occidentale.	Alto collinare - montuoso
Rilievi a Nord Est di Santa Maria Tiberina.	
a) Rilievi a Nord Est di Lama (valle del torrente ama lungo limite comunale settentrionale) b) Versante occidentale dell'allineamento Monte Cedrone – Poggio Cadinieri (a Nord Est di Santa Maria Tiberina) c) al margine meridionale della pianura alluvionale del fiume Tevere ad Est di Trestina	
New New	ella porzione centrale del comune, sulle colline este in dx e sx idrografica del F. Tevere. lievi collinari di SO delimitati dalle valli dei rrenti: Nestore-Minima, Minima-Seano, Seanonite comunale meridionale. Rilievo di alta collina delimitato dalla valle del rrente Nestore ed il limite comunale occidentale. Versanti della valle del T. Scarzola nel tratto a losso del limite comunale Nord occidentale. lievi a Nord Est di Santa Maria Tiberina. Rilievi a Nord Est di Lama (valle del torrente ama lungo limite comunale settentrionale) Versante occidentale dell'allineamento Monte edrone – Poggio Cadinieri (a Nord Est di Santa aria Tiberina) al margine meridionale della pianura alluvionale

Successione Umbra: Formazione marnoso arenacea Romagnola Affiora in una vasta area (circa 2/3 dell'intero territorio comunale) in corrispondenza del sistema collinare compreso tra la valle del Tevere ed il limite comunale orientale e nell'isola amministrativa

Successione
Marchigiana: Formazione
marnoso Arenacea
Marchigiana (membro
Urbino)

Affiora lungo il limite comunale posto a Nord Est, a ridosso del limite regionale Umbria-Marche.

La combinazione delle litologie affioranti e della morfologia ad esse collegata rende il territorio comunale molto vulnerabile nei confronti di fenomeni di dissesto gravitativo. L'alta densità di frane nelle zone rilevate è ben rappresentata nelle cartografie di Piano e coinvolge essenzialmente le aree montuose collinari.

La geologia e le strutture tettoniche presenti nell'area di interesse sono frutto della serie di eventi tettonici che hanno interessato tutto l'Appennino Centrale negli ultimi 15 MA.

In particolare una prima fase definita "compressiva" ha prodotto un piegamento ed un raccorciamento della copertura della serie Umbro Marchigiana, con la genesi lungo i piani di frattura di sovrascorrimenti.

Successivamente una fase definita "distensiva" ha prodotto uno stato distensivo, generando nuove serie di fratture (faglie dirette) o mobilitando le precendenti e portando alla formazione di importanti graben (quali la Valle Tiberina e la Valle Umbra) che sono stati poi colmati da depositi di tipo lacustre e poi alluvionale.

4. CARTA DELLE MICROZONE OMOGENEE IN PROSPETTIVA SISMICA

Come già anticipato nella premessa al punto 1.6.3.2.1 Approfondimenti conoscitivi degli "Indirizzi e criteri generali per la microzonazione sismica" del DPCN: "Operazione preliminare per la predisposizione del livello 2 è costituita dall'analisi della *Carta delle microzone omogenee in prospettiva sismica* (livello 1) al fine di individuare le aree con i maggiori livelli di incertezza e programmare eventuali nuove indagini [...]".

La Parte Strutturale del PRG contiene per tutto il territorio comunale (così come richiesto dalla vigente D.G.R. 377/2010) la Carta delle microzone omogenee in prospettiva sismica, che è rappresentata dall'elaborato **GE.06.8- Carta delle microzone omogenee in prospettiva sismica**. Tale carta è stata infatti realizzata acquisendo la cartografia regionale in formato vettoriale secondo quanto espresso al Punto 3 della D.G.R. che delibera "di ritenere le carte di pericolosità sismica locale in scala 1:10.000, prodotte ed aggiornate dai competenti Servizi regionali (approvate con gli atti di cui all'allegato A), equivalenti al livello 1 di approfondimento (Carte delle microzone omogenee in prospettiva sismica) degli "Indirizzi e criteri generali per la microzonazione sismica".

Nel presente studio per il PRG Parte Operativa ci si è quindi limitati a fare riferimento a quanto in essa contenuto.

Le sezioni di riferimento per le Carte di Pericolosità Sismica sono le seguenti:

- 279130, 279140;
- 289030, 289040, 289060, 289070, 289080, 289100, 289110, 289120, 289130, 289140, 289150, 289160;
- 290010, 290020, 290050, 290060, 290090, 290100, 290130;
- 299010, 299020, 299030, 299040, 299060, 299070, 299100, 299110;
- 300010.

5. INDAGINI PREGRESSE: DATI GEOTECNICI E GEOFISICI

Come già anticipato in premessa per il presente studio si è deciso di realizzare una Carta delle Indagini raccogliendo numerose indagini pregresse realizzate in prossimità dei terreni di interesse per la PO sulla base delle indicazioni dei pianificatori.

In tal senso si è proceduto raccogliendo i dati provenienti da tre diversi fonti:

- indagini contenute in pratiche edilizie individuate dai Tecnici comunali in un intorno di circa 100-200 metri dai terreni interessati significativamente dalla PO;
- 2. indagini eseguite da Regione Umbria e Comune per la realizzazione degli studi di Microzonazione di Livello 1 e 2 che hanno interessato il Capoluogo e la frazione di Trestina;
- 3. indagini contenute nella Banca dati delle indagini geognostiche e geofisiche per Google Earth.

Le indagini geognostiche raccolte sono piuttosto numerose e distribuite in tutto il territorio di interesse.

La ricerca è stata mirata agli anni più recenti, al fine di individuare il maggior numero di prove possibili effettuate secondo la vigente normativa e quindi con il supporto di prove sismiche che individuino le velocità delle onde S per almeno 30 metri dal piano campagna o fondale.

Come già premesso non è stata effettuata una nuova campagna d'indagine in quanto, a fronte del grande numero di terreni interessati dalla PO, sarebbe risultata troppo gravosa economicamente per il Comune. Si ricorda inoltre che nelle successive fasi alla PO, sarà comunque necessario per ogni comparto effettuare uno specifico studio geologico a carico del soggetto attuatore.

In sintesi sono state individuate le seguenti prove pregresse:

- N°39 prove totali dalla ricerca effettuata dagli Uffici Comunali;
- N°86 prove totali dagli Studi di Microzonazione preesistenti;
- N°128 prove totali dalla Banca dati della Regione Umbria.

Tali prove sono state suddivise in maniera sintetica in 7 principali categorie:

- sondaggi (non discriminando su eventuali prove accessorie agli stessi);
- prove penetrometriche dinamiche (effettuate con differenti tipologia di penetrometro);
- prove penetrometriche statiche;
- prove sismiche HVSR (Horizontal to Vertical Spectral Ratio) o metodo di Nakamura. La tecnica dei rapporti spettrali H/V consiste nel calcolo del rapporto degli spettri di Fourier del rumore nel piano orizzontale H (generalmente lo spettro H viene calcolato come media degli spettri di Fourier delle componenti orizzontali NS ed EW) e della componente verticale V.
- prove sismiche MASW (Multichannel Analysis of Sur face Waves). La MASW è una metodologia che consente di ottenere un modello verticale delle VS, a partire dalle modalità di propagazione delle onde di superficie, in particolare le onde di Rayleigh.
- prove sismiche in onde SH.

Tutte le indagini raccolte sono state georeferenziate su base GIS in coordinate Gauss Boaga.

Per tutte le indagini di cui ai punti 1 e 2 è stata digitalizzata almeno una diagrafia rappresentativa del risultato dell'indagine e riportata nell'allegato a questa relazione. Per le indagini della Banca regionale, essendo le stesse liberamente consultabili via internet, ci si è limitati a riportare una tabella con tutte le prove e il relativo link da cui scaricare il file con il loro esito.

6. ASPETTI CONOSCITIVI IN PROSPETTIVA SISMICA

Come già più volte ricordato, essendo i terreni oggetto di trasformazione urbanistica oltre 100, non è stato possibile realizzare per ognuno di essi uno specifico paragrafo.

Per esporre il quadro generale, ed evidenziare eventuali problematiche, si è quindi fatto riferimento a degli inquadramenti a piccola scala, che possono in qualche maniera riassumere le principali condizioni attese nel territorio comunale, e si sono realizzati degli approfondimenti mirati per le aree interessate da elementi significativi.

6.1 GEOLOGIA

In prima analisi si può osservare che circa l'80% dei terreni oggetto di trasformazione ricadono interamente o in parte sulla zona "6 - aree di fondovalle con depositi alluvionali" recenti o terrazzati, mentre praticamente in meno del 5% dei casi i terreni ricadono su zone riconducibili al "14 - aree stabili non suscettibili di amplificazioni locali" che corrisponde ad aree con bedrock affiorante o sub affiorante e assenza di fenomeni morfologici significativi.

Gli studi di microzonazione dovranno pertanto tenere conto nel 95% dei casi di condizioni predisponenti all'amplificazione sismica.

Tra questi si devono per altro evidenziare alcuni elementi di sicuro interesse per la pianificazione:

- zone di contatto tra litotipi molto differenti, che potrebbero in qualche modo ingenerare diversi fattori di amplificazione all'interno degli stessi terreni e che possono interessare circa il 10% dei casi:
- zone interessate da terreni naturali scadenti, in particolar modo da argille poco consistenti tipiche di alcuni ambiti della pianura alluvionale o dei depositi fluvio-lacustri;
- zone interessate da riporti/riempimenti antropici di cui non si conoscono le effettive litologie e che pertanto andranno adequatamente indagate.

La successiva carta raffigura in modo intuitivo quanto evidenziato per il netto prevalere dei casi di terreni interessati dalla PO e ricadente su depositi alluvionali.

Si sottolinea che generalmente in tali aree il bedrock è posto a profondità variabile rispetto all'asse trasversale della valle (rispetto ai bordi delle valli il bedrock è generalmente più profondo al centro e mentre è più superficiale avvicinandosi ai versanti) e all'importanza della valle stessa (le coltri

alluvionali hanno spessori di massimo poche decine di metri lungo gli assi degli affluenti del Tevere, mentre sono molto maggiori lungo la valle tiberina).

Risulta inoltre di fondamentale importanza la determinazione della granulometria dei depositi alluvionali e fluvio lacustri, che essendo fortemente variabile per natura sedimentologica, non può essere preventivamente determinata su base cartografica, ma bensì andrà individuata con le future indagini in situ.

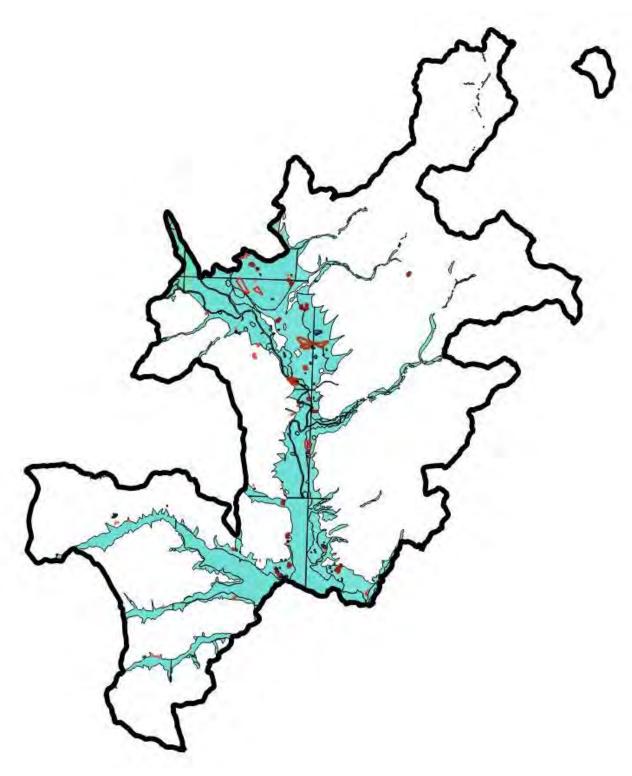


Figura 11: sovrapposizione tra terreni della Città in trasformazione e depositi alluvionali

6.2 GEOMORFOLOGIA

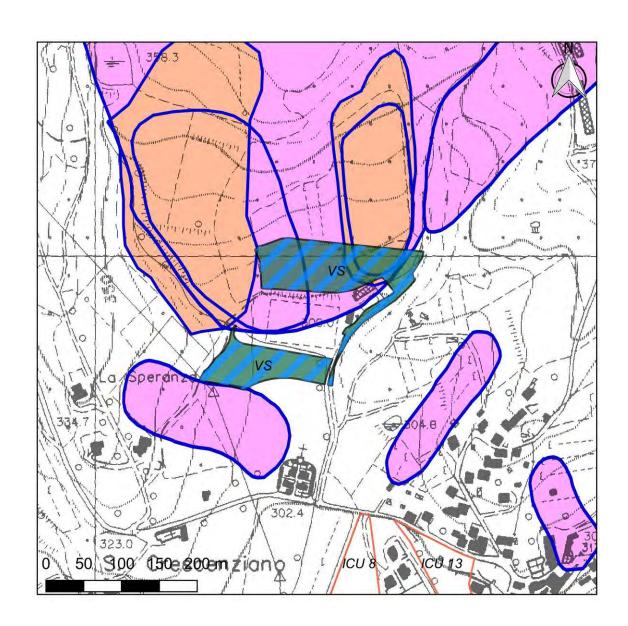
Prendendo spunto da quanto osservato nel precedente paragrafo, essendo circa l'80% dei terreni oggetto della PO ricadente in aree di fondovalle, si può già evidenziare che la maggiore parte degli interventi di trasformazione ricadranno in aree con bassa presenza di fenomeni di frana o a rischio frana.

Il territorio di Città di Castello è molto complesso e le unità di paesaggio collinare e alto collinare/montuoso (di cui al capitolo 3) sono quelle più diffusamente interessate da fenomeni di dissesto (frane, erosioni superficiali) siano essi attivi, quiescenti o inattivi.

È perciò importante nelle future fasi di attivazione delle previsioni non limitarsi a valutazioni su quanto attualmente cartografato, ma approfondire le valutazioni sul rischio di amplificazioni riconducibili a zone in frana attraverso studi di dettaglio.

Al fine di verificare la compatibilità delle previsioni di Piano con lo stato geomorfologico è stata effettuata una sovrapposizione dei due tematismi frane censite e terreni con nuove previsioni. E' emersa un'unica interferenza con la seguente area:

Sigla	Terreno	Località	Elemento da PRG Strutturale e MOPS
VS	Aree per dotazioni e verde pubblico	Morra	IFFI, MOPS Z2 Z3, PAI relitta, CARG quiescente


In calce si riporta lo stralcio cartografico in scala 1:5000.

Come previsto dalla normativa, in tali casi si rinvia l'approfondimento di tali elementi alla fase attuativa, tenendo presente che le NTA riportano quali studi e quali interventi sono previsti per l'attivazione delle previsioni urbanistiche.

Tra gli altri elementi caratterizzati nella Carte delle MOPS, non si sono invece ravvisati elementi di interferenza con la presenza di picchi topografici, mentre sono invece da considerare, in questo caso soprattutto nelle zone di fondovalle, gli orli di scarpata dei terrazzamenti alluvionali che possono sovrapporsi ai terreni di interesse.

L'ultima figura del paragrafo ha lo scopo di illustrare l'elevato numero e la distribuzione delle frane riportate negli elaborati cartografici della Parte Strutturale rispetto ai terreni oggetto di trasformazione.

5	Sigla	Terreno	Località	Elemento da PRG Strutturale e MOPS
١	VS	Aree per dotazioni e verde pubblico	Morra	IFFI, MOPS Z2 Z3, PAI relitta, CARG quiescente

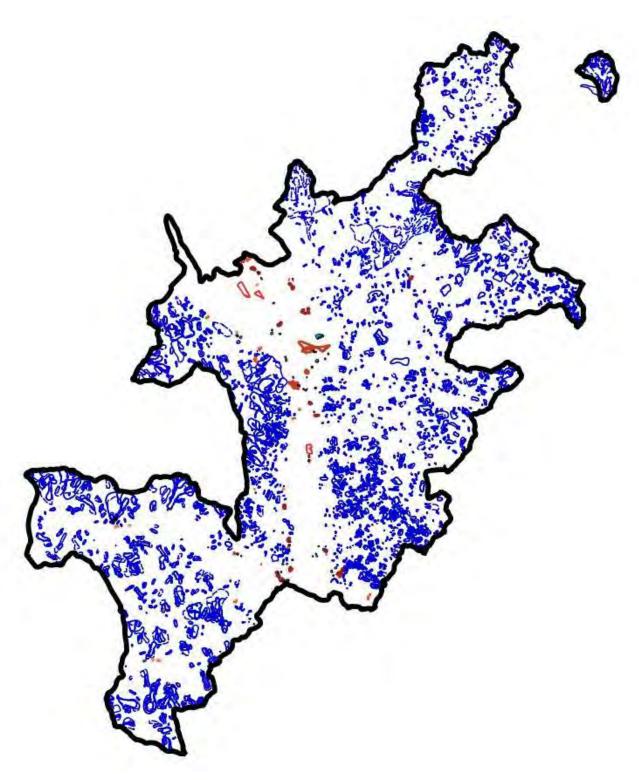


Figura 12: sovrapposizione tra terreni della Città in trasformazione e frane contenute negli elaborati geologici della Parte Strutturale

6.3 GEOTECNICA

La complessità e variabilità di condizioni geologico-tecniche, che è possibile riscontrare all'interno dell'esteso territorio di Città di Castello, non permettono di semplificare la casistica di situazioni che possono interessare i terreni in oggetto.

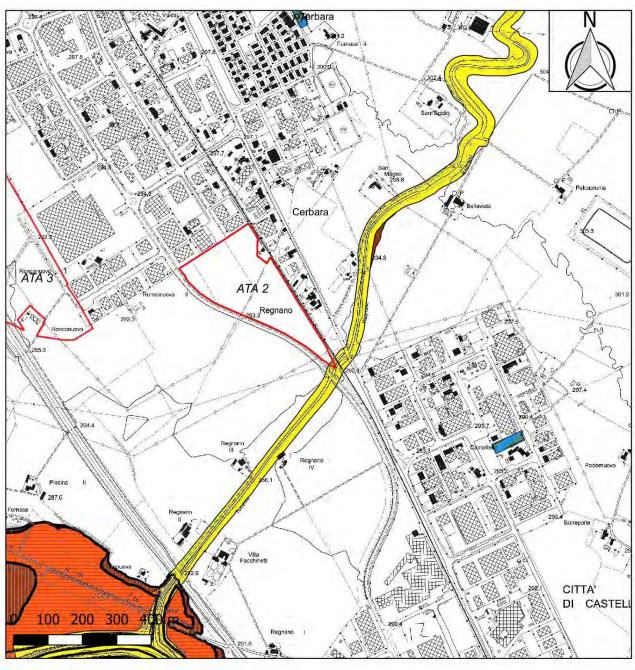
In questo paragrafo, comunque, si ricordano due dei principali fattori da considerare nei futuri studi di livello 2 ed eventualmente 3:

- le future indagini dovranno preoccuparsi di escludere la presenza di terreni scadenti, soprattutto laddove siano presenti depositi antropici e orizzonti argillosi estesi;
- pur non essendo noti casi di liquefazione dei terreni, l'area alluvionale è caratterizzata dalla presenza di falda superficiale e, spesso, con sedimenti a significativa componente sabbiosa. E' pertanto fondamentale che in questi casi i futuri studi si avvalgano di indagini che permettano una corretta valutazione anche del rischio di liquefazione.

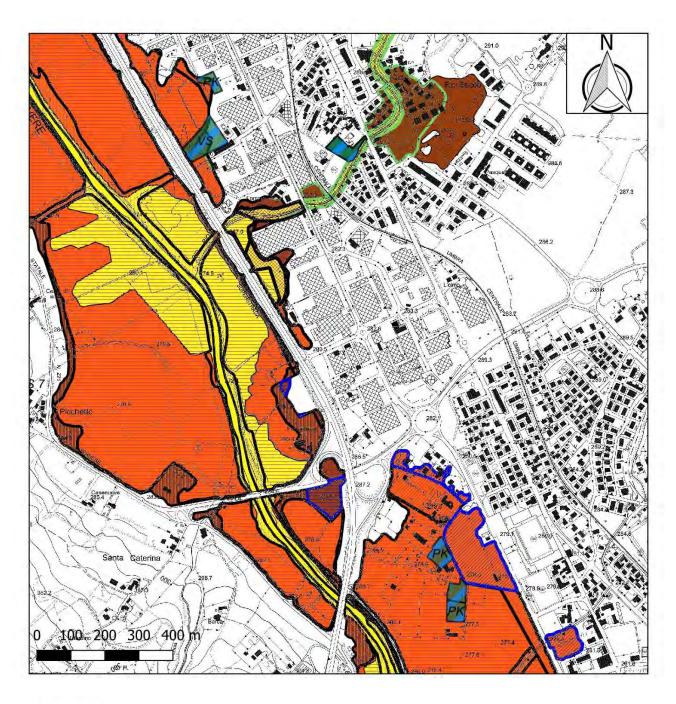
6.4 IDROGEOLOGIA

Come evidenziato nel precedente paragrafo, la combinazione di caratteristiche litologiche e geotecniche, in presenza di falda superficiale, può determinare un elemento di rischio in prospettiva sismica a causa del fenomeno della liquefazione dei terreni.

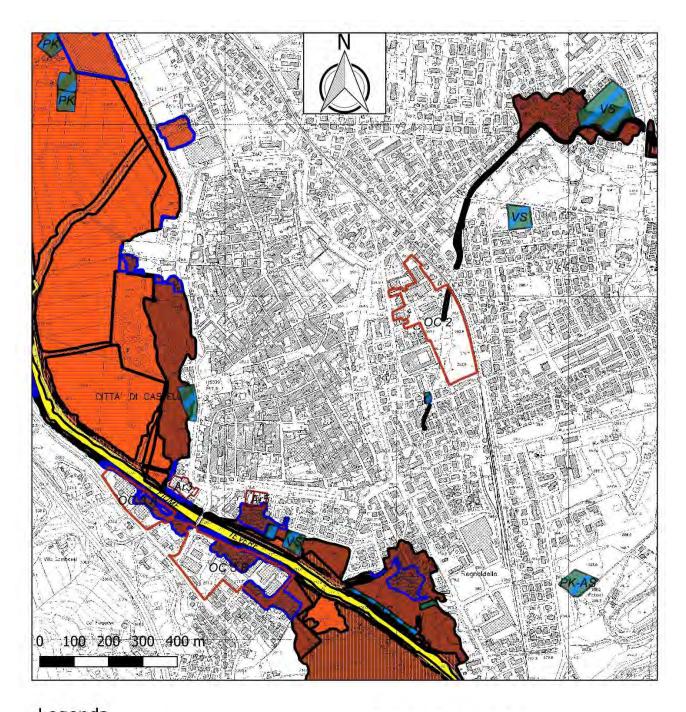
La pianura del Tevere e le valli subpianeggianti dei suoi principali affluenti sono sede di acquiferi di significativa importanza, che presentano spesso quote piezometriche prossime al piano campagna.

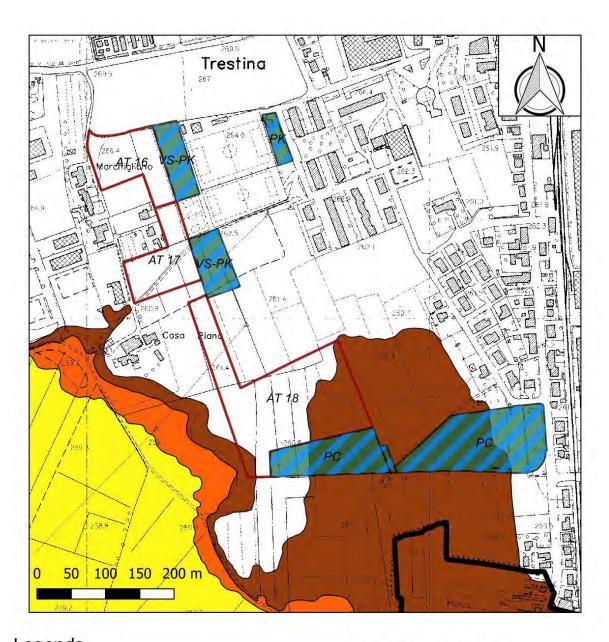

E' di grande importanza quindi che in occasione dei futuri approfondimenti, si determini la quota media stagionale della falda nei siti dei terreni in cui si andranno a realizzare le trasformazioni, quale dato necessario per la verifica a liquefazione richiesta dalla vigente normativa.

A livello idrogeologico generale, si ricorda anche che, seppur non avendo particolari inerenze con l'aspetto sismico, gran parte delle aree alluvionali sono caratterizzate, proprio per la presenza di falda superficiale e terreni a componente da sabbiosa a ghiaiosa, da elevata vulnerabilità degli acquiferi. Pertanto i futuri interventi dovranno garantire di non arrecare danno alla risorsa idrica, anche in condizioni di stress sismico.

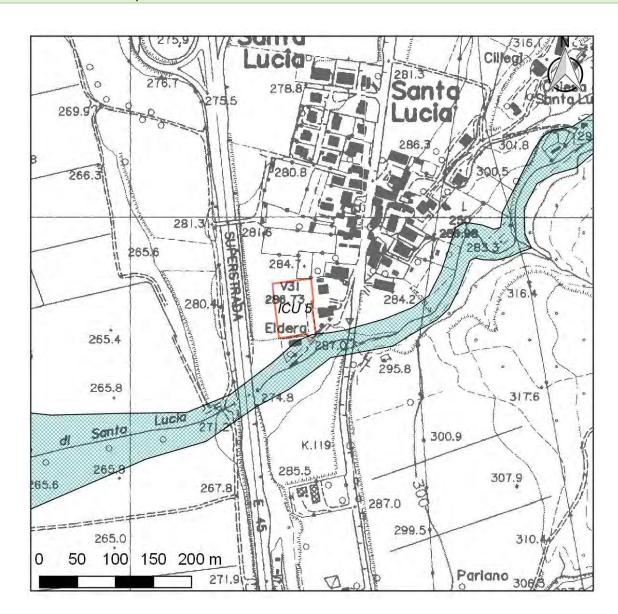

6.5 IDRAULICA

Come si è visto la maggior parte dei terreni oggetto di trasformazione ricade in aree di pianura alluvionale. La presenza di aree di esondazione è poco significativa in prospettiva sismica, in quanto non influenza direttamente le caratteristiche sismiche del territorio.

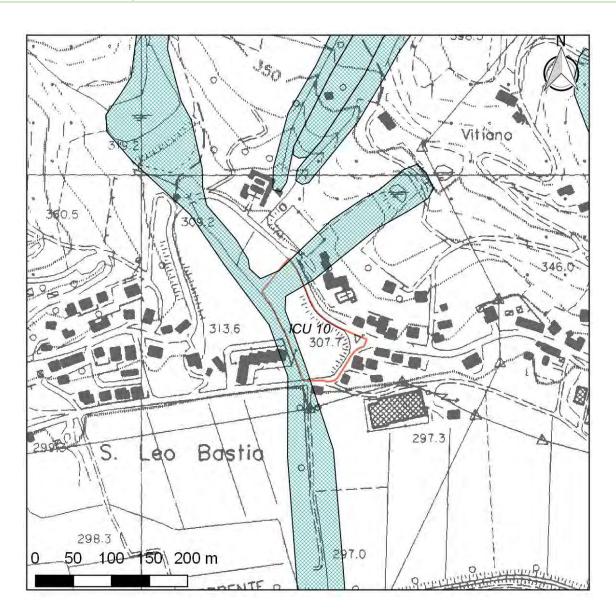

Si è comunque valutata l'eventuale interferenza tra le aree soggette a trasformazione urbanistica e le fasce idrauliche riportate nella Parte Strutturale del PRG, riscontrando la presenza di sovrapposizioni così come riportate nelle successive quattro.



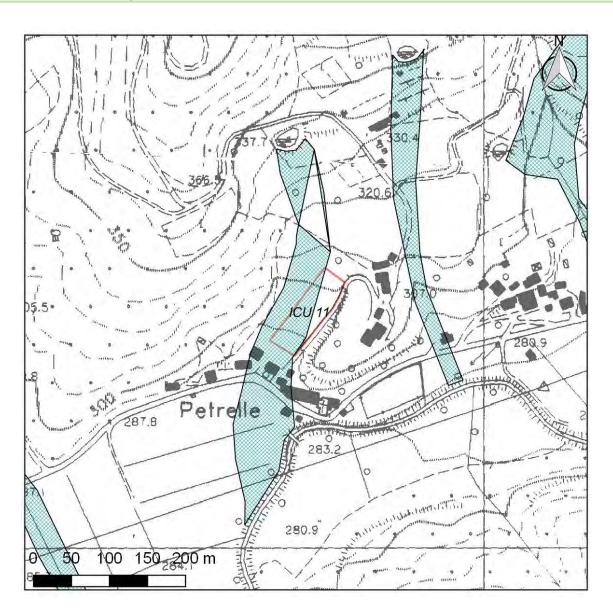
Legenda STUDI IDRAULICI 01 PERIMETRI ZONE Rischio agg 30/09/15 Fasce idrauliche Confine_Comunale Fascia A ____ R1 Parte Operativa Fascia B R2 Ambiti di trasformazione per attività - ATA Fascia C R3 Interventi di completamento semiurbani - ICS Rischio D 26/16_vap01 ₩ R4 R2 Rischio D 49/2010 Interventi di completamento urbani - ICU R3 □ R1 Ambiti di trasformazione - AT **R4** R2 Operazioni complesse - OC R3 Aree per dotazioni a verde pubblico Aree da recuperare - Ar

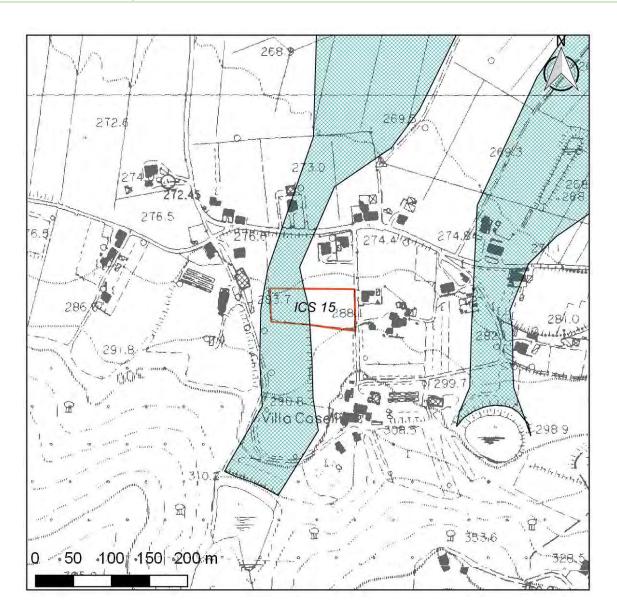

Assumono invece una più significativa importanza gli effetti indiretti che il sisma può generare sul rischio idraulico. Va infatti evidenziato, che in analogia a quanto avviene per il fenomeno geomorfologico con le frane sismo-indotte, l'azione sismica può innescare il danneggiamento di argini fluviali e il crollo di corpi di diga. In tal senso si è perciò deciso di verificare la sovrapposizione tra le aree di interesse urbanistico e le fasce di attenzione collegate alla presenza degli invasi collinari e riportate nella Parte Strutturale del PRG.

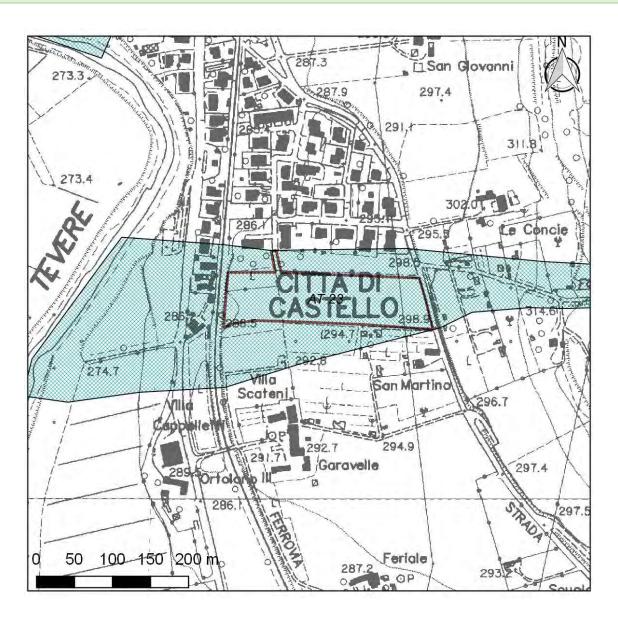
Le stesse sono riportate nella successiva tabella e nelle relative figure.

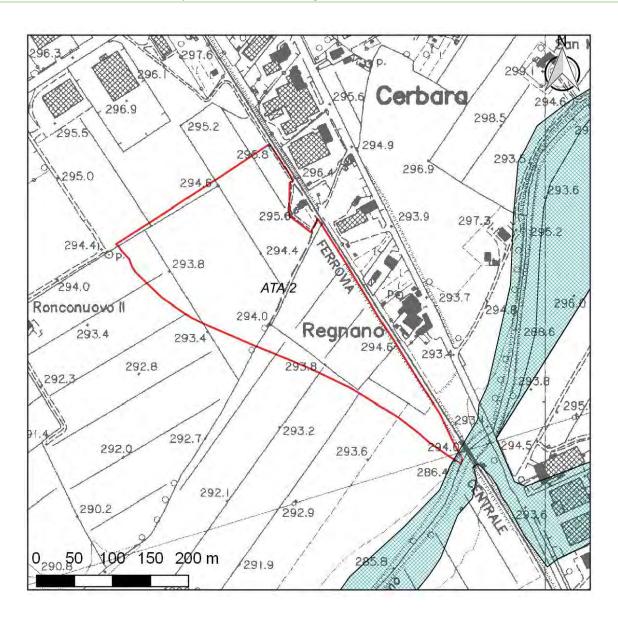

Anche in questo caso, come previsto dalla normativa, si rinvia l'approfondimento di tali elementi alla fase attuativa, tenendo presente che le NTA riportano quali studi e interventi sono previsti per l'attivazione delle previsioni urbanistiche.

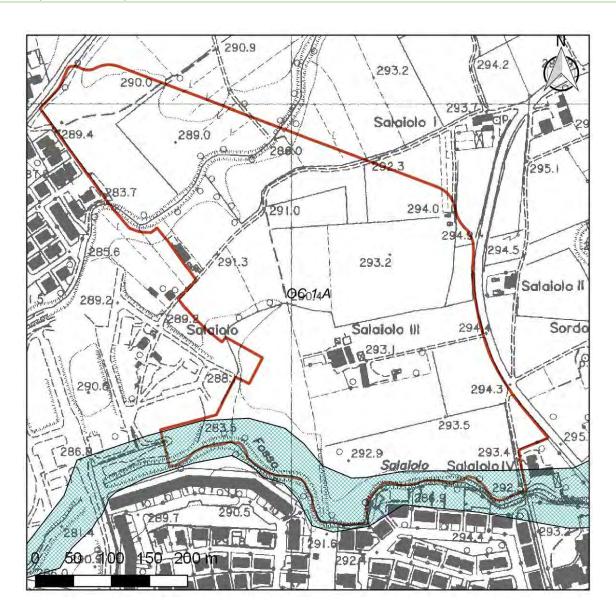
Sigla	Terreno	Località	Elemento
ICU 5	Interventi di completamento urbani	amento urbani Santa Lucia	
ICU 10	Interventi di completamento urbani	S. Leo Bastia	Fascia di attenzione invasi
ICU 11	Interventi di completamento urbani	Petrelle	Fascia di attenzione invasi
ICS 15	Interventi di completamento semiurbani	Villa Caselli	Fascia di attenzione invasi
AT 23	Ambiti di trasformazione	Città di Castello Sud	Fascia di attenzione invasi
ATA 2	2 Ambiti di trasformazione per attività Regnano		Fascia di attenzione invasi
OC 1.A	Operazioni complesse	Città di Castello	Fascia di attenzione invasi
OC 1.C	Operazioni complesse	Città di Castello	Fascia di attenzione invasi
PK	Aree per dotazioni e verde pubblico	Volterrano	Fascia di attenzione invasi
VS	Aree per dotazioni e verde pubblico	Morra	Fascia di attenzione invasi
VS	Aree per dotazioni e verde pubblico	Città di Castello	Fascia di attenzione invasi
	Aree per dotazioni e verde pubblico	Regnaldello (Città di Castello)	Fascia di attenzione invasi
	Aree per dotazioni e verde pubblico	Riosecco (Città di Castello)	Fascia di attenzione invasi
VS	Aree per dotazioni e verde pubblico	Lerchi	Fascia di attenzione invasi
	Aree per dotazioni e verde pubblico	Ronti	Fascia di attenzione invasi

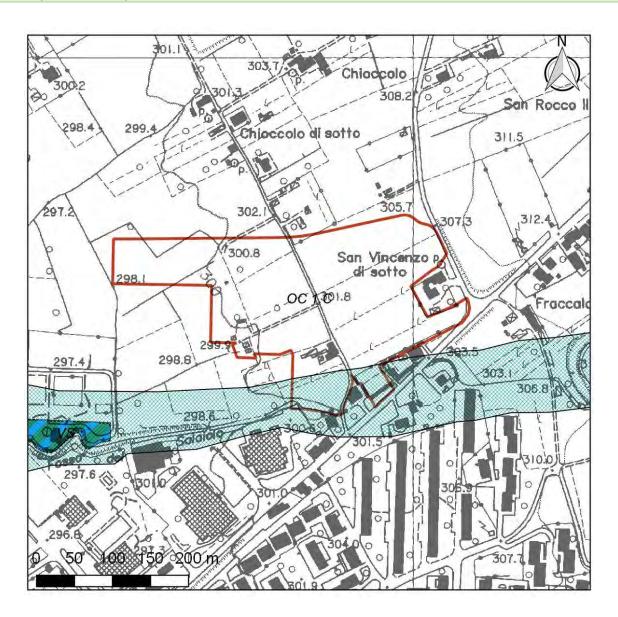

Sigla	Terreno	Località	Elemento
ICU 5	Interventi di completamento urbani	Santa Lucia	Fascia di attenzione invasi

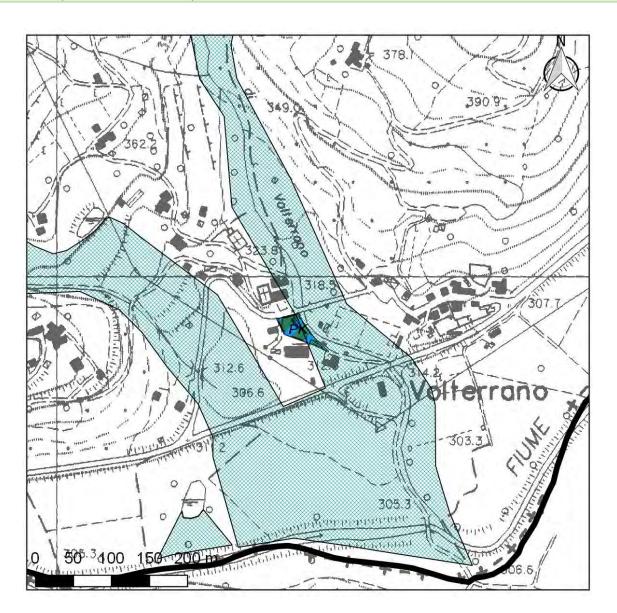

Sigla	Terreno	Località	Elemento
ICU 10	Interventi di completamento urbani	S. Leo Bastia	Fascia di attenzione invasi

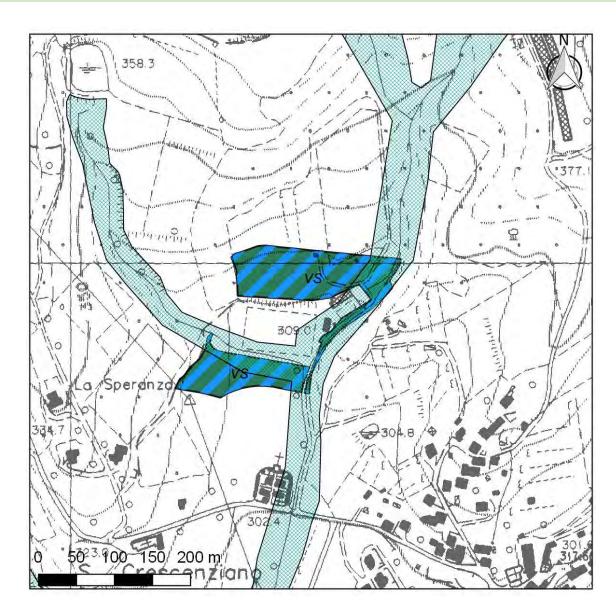

Sigla	Terreno	Località	Elemento
ICU 11	Interventi di completamento urbani	Petrelle	Fascia di attenzione invasi

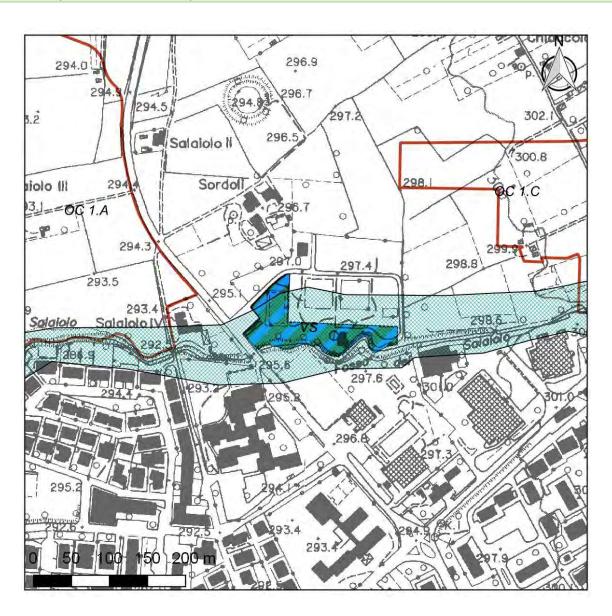

Sigla	Terreno	Località	Elemento
ICS 15	Interventi di completamento semiurbani	Villa Caselli	Fascia di attenzione invasi

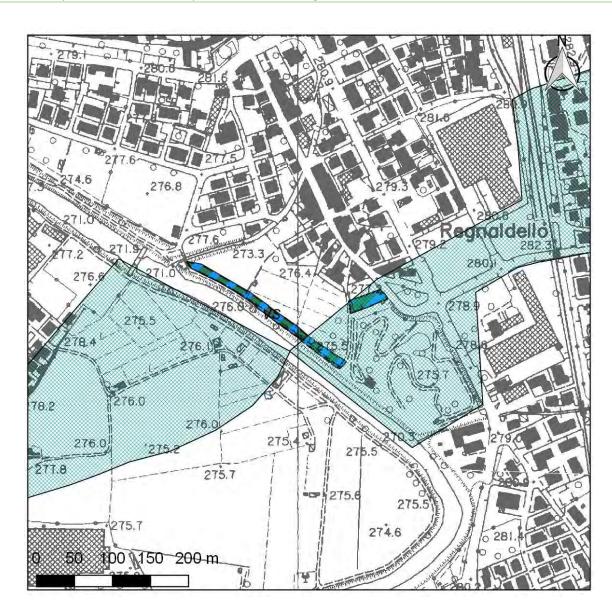

Sigla	Terreno	Località	Elemento
AT 23	Ambiti di trasformazione	Città di Castello Sud	Fascia di attenzione invasi

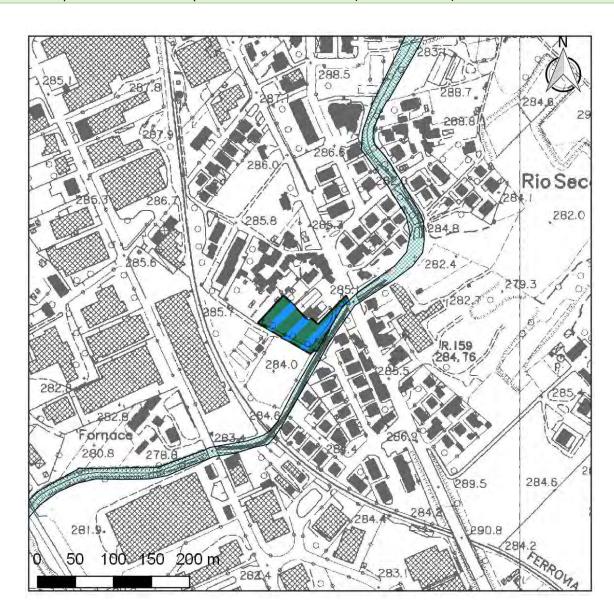

Sigla	Terreno	Località	Elemento
ATA 2	Ambiti di trasformazione per attività	Regnano	Fascia di attenzione invasi


Sigla	Terreno	Località	Elemento
OC 1.A	Operazioni complesse	Città di Castello	Fascia di attenzione invasi

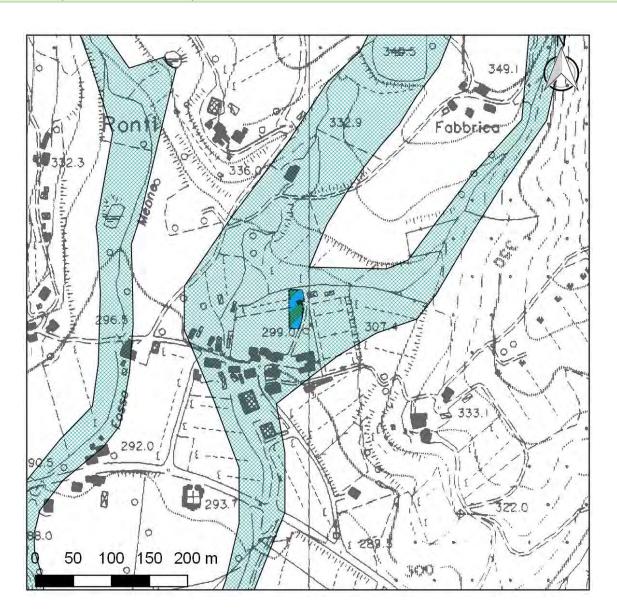

Sigla	Terreno	Località	Elemento
OC 1.C	Operazioni complesse	Città di Castello	Fascia di attenzione invasi


Sigla	Terreno	Località	Elemento
PK	Aree per dotazioni e verde pubblico	Volterrano	Fascia di attenzione invasi




Sigla	Terreno	Località	Elemento
VS	Aree per dotazioni e verde pubblico	Morra	Fascia di attenzione invasi

Sigla	Terreno	Località	Elemento
VS	Aree per dotazioni e verde pubblico	Città di Castello	Fascia di attenzione invasi



Sigla	Terreno	Località	Elemento
VS	Aree per dotazioni e verde pubblico	Lerchi	Fascia di attenzione invasi

Sigla	Terreno	Località	Elemento
	Aree per dotazioni e verde pubblico	Ronti	Fascia di attenzione invasi

6.6 GEOFISICA

Come noto per gli studi di livello 2 e l'utilizzo degli abachi indicati dalla Protezione Civile, sono necessari due parametri di ingresso (H spessore delle coperture e VsH velocità sismica delle coperture) che spesso sono entrambi ricavabili solo da prove di tipo geofisico.

E' importante quindi che, in assenza di indagini pregresse, per i futuri studi di Micronazione di Livello 2 siano approntate specifiche indagini sismiche in situ.

Si deve evidenziare che le indagini pregresse mostrano che in molti casi, il bedrock sismico non corrisponde con quello litologico. Le rocce torbiditiche, tipiche delle Serie affioranti nel territorio comunale, mostrano infatti velocità generalmente inferiori ad 800 m/s per molti metri anche all'interno delle formazioni litoidi.

6.7 CONCLUSIONI

Come espresso le cartografie di base e indagini pregresse raccolte hanno evidenziato che i terreni della Città in trasformazione ricadono in un contesto geologico complesso e impossibile da semplificare.

La maggior parte di tali terreni interessa il fondovalle, il quale è caratterizzato dall'affiorare di depositi alluvionali recenti e terrazzati di spessore variabile, costituiti da orizzonti e lenti di sedimenti di granulometria variabile, a luoghi sostituiti da depositi antropici. In tale ambito la falda risulta spesso superficiale e la profondità del bedrock non sempre di facile determinazione.

Solo una minima parte dei terreni è ricadente in zone non suscettibili di amplificazione.

I terreni ricadenti negli ambiti collinare e montuoso, sono interessati dall'affiorare di coltri fluvio-lacustri o terrigene, nonché detritiche, tutte poggianti su bedrock torbiditico, che può non coincidere con il bedrock sismico propriamente detto. In tali ambiti si è evidenziata l'importanza di escludere la presenza di dissesti morfologici, che possano rappresentare una causa di aggravio del rischio sismico.

Il presente studio non può essere considerato esaustivo per la conoscenza di tutte le parti di territorio inerenti la parte operativa e pertanto, come richiesto dalla vigente normativa, si rimanda al dovuto approfondimento degli elementi esposti alla fase attuativa.

7. CARTA DELLE INDAGINI

Le ubicazioni delle indagini pregresse raccolte sono state riportate nella Carta delle indagini rappresentata mediante n°22 tavole, realizzate in formato cartaceo A3 e in scala 1:10.000 ed allegate alla presente Relazione con il nome di Allegato 1 "Carta delle indagini".

Le "viste" di tali tavole racchiudono tutti terreni ricevuti da Cooprogetti ed indicati come oggetto di trasformazione e ricalcano l'inquadramento cartografico in formato A2 presentato negli altri elaborati di piano.

I dati sono stati rappresentati in forma simbolica e per tipologia, utilizzando come riferimento la legenda e le simbologie previste¹ dagli 'Standard di Rappresentazione e Archiviazione Informatica' redatti dal DPC (versione 2.0beta –II, Giugno 2012) ed utilizzando il software Qgis 2.18.

I dati sono identificati univocamente con sigla e numeri progressivi a cui corrisponde una specifica pagina nell'allegato 2 "Diagrafie delle indagini". Le diagrafie sono state organizzate in 3 principali blocchi: il primo è quello relativo alle indagini raccolte nel 2018 dagli Uffici Tecnici del Comune; il secondo è quello relativo alle indagini tratte dalla Banca dati della Regione Umbria e il terzo è quello delle indagini effettuate per la Microzonazione del Capoluogo e della frazione di Trestina, che sono state distinte in due "sotto blocchi"².

La chiave di lettura per ritrovare le indagini all'interno dei blocchi non si limita quindi alla lettura della sigla, ma anche al colore con cui essa è rappresentata in carta. Infatti i tre differenti database sono stati distinti in tre differenti colori: blu, verde e rosso così come ben rappresentato nella Legenda allegata alla Carta a cui si rimanda per ogni ulteriore chiarimento.

8. CARTA DELLE MICROZONE OMOGENEE

Come già indicato in premessa la Parte Strutturale del PRG contiene per tutto il territorio comunale (così come richiesto dalla vigente D.G.R. 377/2010) la Carta delle microzone omogenee in prospettiva sismica, realizzata acquisendo la cartografia regionale secondo quanto espresso al Punto 3 della D.G.R. che delibera "di ritenere le carte di pericolosità sismica locale in scala 1:10.000, prodotte ed aggiornate dai competenti Servizi regionali (approvate con gli atti di cui all'allegato A), equivalenti al livello 1 di approfondimento (Carte delle microzone omogenee in prospettiva sismica) degli "Indirizzi e criteri generali per la microzonazione sismica"".

¹ Alcuni simboli risultano leggermente semplificati rispetto agli Standard soprattutto relativamente alla categoria dei sondaggi, che è stata riassunta in un unico simbolo. Anche le prove penetrometriche dinamiche presentano un unico simbolo senza distinzioni di tipologia intrinseca (dinamiche leggere, pesanti... etc). Per le indagini sismiche è stata riportata, oltre ad un'ubicazione puntuale, anche una traccia approssimata di quello che è stato lo stendimento per l'acquisizione.

² In questo caso è possibile riscontrare sigle uguali derivate dagli studi originali, ma tali indagini sono comunque ricadenti all'interno o in prossimità dei due distinti e lontani perimetri di studio.

Allegate in calce alla presente relazione sono riportati degli stralci di tale cartografia rielaborata partendo dal file .SHP liberamente scaricabile dal sito istituzionale della Regione ed in particolare all'indirizzo internet del sito Umbriageo:

http://www.umbriageo.regione.umbria.it/catalogostazioni/catalogo.aspx.

In particolar modo nell'Allegato 3 "Carta delle MOPS", in totale conformità a quanto realizzato per la Carta delle Indagini, sono state riportate N°16 tavole realizzate in formato cartaceo A3 e in scala 1:10.000, con le stesse "viste" dell'Allegato 1.

9. LIVELLO 2

Il livello 2 si pone due obiettivi da raggiungere in sequenza:

- compensare alcune incertezze del livello 1 con approfondimenti conoscitivi;
- fornire quantificazioni numeriche, con metodi semplificati (abachi e leggi empiriche), della modificazione locale del moto sismico in superficie (zone stabili suscettibili di amplificazioni locali) e dei fenomeni di deformazione permanente (zone suscettibili di instabilità).

Per il raggiungimento di tali obiettivi si possono determinare modificazioni delle geometrie delle zone individuate precedentemente nella *Carta delle microzone omogenee in prospettiva sismica*.

Il Livello 2 della Microzonazione, che nello spirito del presente studio dovrà essere raggiunto dal soggetto attuatore nei terreni soggetti a trasformazione urbanistica o da urbanizzare, prevede l'individuazione dei fattori numerici (coefficienti di amplificazione) Fa ed Ft.

I fattori Fa (amplificazione stratigrafica) ed Ft (amplificazione topografica) devono essere determinati facendo riferimento a tutti i dati raccolti con lo studio di Livello 1 e con la campagna di indagine realizzata ad hoc per le singole aree.

Per la determinazione dei fattori di amplificazione Fa da attribuire alle zone studiate si può fare riferimento agli abachi di cui alle Linee guida della protezione civile (Indirizzi e criteri per la microzonazione sismica parte III).

La scelta di adottare tali abachi è legittimata da quanto espresso nelle linee guida stesse³:

"In appendice sono riportati alcuni abachi di riferimento che potranno essere utilizzati da parte delle regioni:

- come termine di confronto con abachi preparati dalle stesse regioni;
- in via temporanea, fino a quando non ne avranno predisposti di specifici per il proprio contesto territoriale:
- in via definitiva, avendo valutato l'applicabilità al proprio contesto territoriale".

All'interno degli abachi, le combinazioni di H e VsH dovrebbero essere risolte a favore della sicurezza, come richiesto dagli Uffici Tecnici regionali.

³ (Indirizzi e criteri per la Microzonazione sismica parte I-II paragrafo 3.2.1 pag. 123)

Anche il fattore Ft è determinato sulla base di tabelle e diagrammi già contenuti negli Standard del DPC che variano a seconda delle condizioni topografiche riconosciute (creste, scarpate, etc.).

Di seguito sono riportati alcune figure che riportano lo schema per la definizione del tipo di cresta e l'abaco per le creste appuntite.

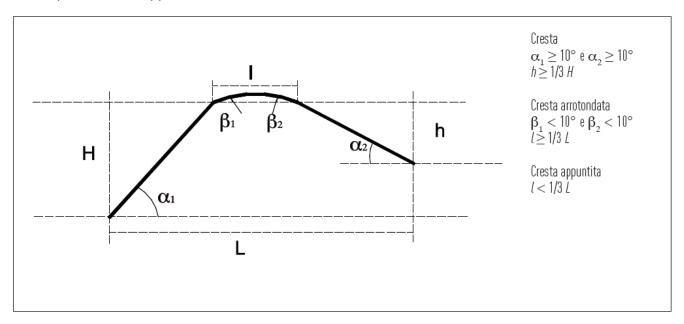


Figura 13: schema di riferimento per la cresta e criteri di riconoscimento

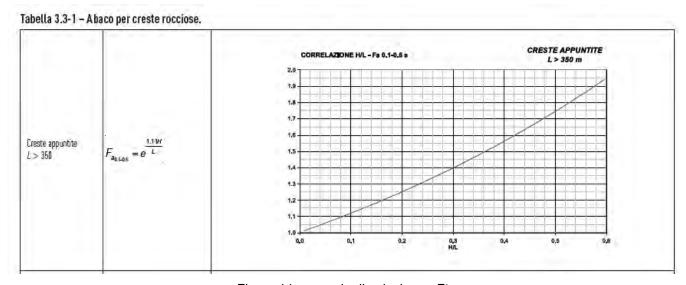


Figura 14: esempio di calcolo per Ft

10. STANDARD E NORMATIVA DI RIFERIMENTO

Il presente studio è stato condotto conformemente alle specifiche tecniche contenute nei seguenti testi di riferimento normativo

 DELIBERAZIONE DELLA GIUNTA REGIONALE 8 marzo 2010, n. 377 "Criteri per l'esecuzione degli studi di microzonazione sismica.

- Indirizzi e Criteri di Microzonazione Sismica del Dipartimento della Protezione Civile Nazionale (ICMS), approvati il 13 novembre 2008 dalla Conferenza delle regioni e delle Province autonome;
- OPCM n. 3907 del 13.11.2010 e OPCM n. 4007 del 29 febbraio 2012, che disciplina i contributi economici per gli interventi di prevenzione del rischio sismico.
- DGR n. 1111 del 18 settembre 2012 "Aggiornamento della classificazione sismica del territorio regionale dell'Umbria.
- DGR n. 1112 del 18 settembre 2012 "Interventi di prevenzione del rischio sismico. Approvazione del programma per l'utilizzo delle risorse finanziarie di cui all'OPCM n. 4007 del 29 febbraio 2012 – Annualità 2011.
- Standard di rappresentazione ed archiviazione informatica Commissione Tecnica per la Microzonazione Sismica (articolo 5, comma 7 OPCM 3907/2010) – Versione 2.0beta-II.
- Legge regionale 21 gennaio 2015, n. 1 "Testo unico governo del territorio e materie correlate".
- Regolamento regionale 18 febbraio 2015, "Norme regolamentari attuative della legge regionale 21 gennaio 2015, n. 1 (Testo unico Governo del territorio e materie correlate)".

11. ALLEGATI

Per lo studio di Microzonazione Sismica di Livello 2 sono stati prodotti i seguenti elaborati:

- 1.0 Diagrafie delle indagini suddivise in base alla fonte (Tavole A4);
- 2.0 Carta delle indagini (Tavole A3, in scala 1:10.000);
- 3.0 Carta delle Microzone Omogenee in Prospettiva Sismica (Tavole A3, in scala 1:10.000).

ALLEGATO 1

DIAGRAFIE DELLE INDAGINI

INDAGINI DATABASE COMUNE 2018

Via B. di Ser Gorello, 11/a - 52100 AREZZO Tel. e Fax (0575) 22730 - Tel. 0337/688517

Rifer. : 60rotill

COUL PISC. & PULL TVA 013082200010
PROVA PENETROMETR. STATICA TABELLE VALORI RESISTENZA

CPT GFD-I-92

PENETROMETRO STATICO tipo 60UDA da 10t (con anello allargatore) - avanz. 2 cm/s - COSTANTE TRASFORMAZIONE Ct = 10.00 punta meccanica tipo Begemann ≠ 35.7em (area punta 10cm² - apertura 60°)

- manicotto laterale (superficie 150 cm²)

: costruzione di edificio industriale - Proprietà : SABBIONI quota inizio : piano lavoro = piano campagna : TRESTINA (PG) Località

prof. falda = 2.50 m da quota inizio

: livello statico di falda ipotizzato dal nº di aste bagnate data : sabato 11-02-1995 note

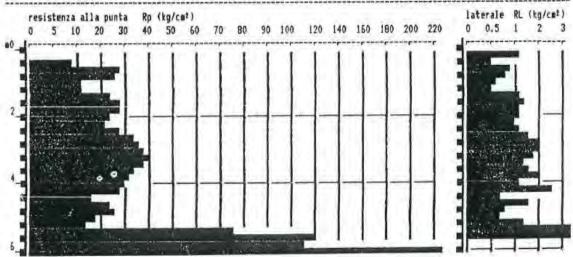
prof.(m)			campagna .totale	Rp kg/cm²	RL kg/cm²	Rp/RL	Rt kg	prof.(m)			campagna .totale	Rp kg/cm²	RL kg/cm ¹	Rp/RL	Rt kg
0.20	-	-	-	-	1.27	-		3.20	40.0	70.0	244.0	40	1.87	21	2440
0.40	9.0	28.0	38.0	9	0.47	19	380	3.40	37.0	65.0	268.0	37	1.47	25	2680
0.60	27.0	34.0	53.0	27	0.93	29	530	3.60	33.0	55.0	300.0	33	1.53	22	3000
0.80	26.0	40.0	49.0	25	0.80	33	490	3.80	32.0	55.0	340.0	32	2.07	15	3400
1.00	12.0	24.0	29.0	12	0.60	20	290	4.00	29.0	60.0	360.0	29	1.27	23	3600
1.20	12.0	21.0	40.0	12	0.47	25	400	4.20	28.0	47.0	363.0	28	2.60	11	3630
1.40	23.0	30.0	44.0	23	1.20	19	440	4.40	16.0	55.0	389.0	16	0.73	22	3890
1.60	27.0	45.0	60.0	27	1.40	19	600	4.60	24.0	35.0	418.0	24	1.60	15	4180
1.80	27.0	48.0	74.0	27	1.27	21	740	4.80	25.0	49.0	432.0	25	0.80	31	4320
2.00	23.0	42.0	83.0	23	1.13	20	B30	5.00	18.0	30.0	438.0	18	0.73	25	4380
2.20	21.0	38.0	103.0	21	1.07	20	1030	5,20	14.0	25.0	437.0	14	1.47	10	4370
2,40	27.0	43.0	127.0	27	1.27	21	1270	5.40	76.0	98.0	509.0	76	9.99	8	5090
2.60	33.0	52.0	155.0	33	1.53	22	1550	5.60	119.0	290.0	625.0	119	9.39	12	6250
2.80	36.0	59.0	165.0	36	2.00	18	1650	5.80	111.0	290.0	713.0	111	-	-	7130
3,00	37.0	67.0	212.0	37	2.00	19	2120	6.00	350.0	+	399.0	350		-60	9990

Rifer. : 60rotil1

CPT 01 PENETROMETR. STATICA PROVA RESISTENZA GPD-1-92 DIAGRAMMI DI

PENETROMETRO STATICO tipo GOUDA da 10 t

Località


Cantiere : costruzione di edificio industriale - Proprietà : SABBIONI

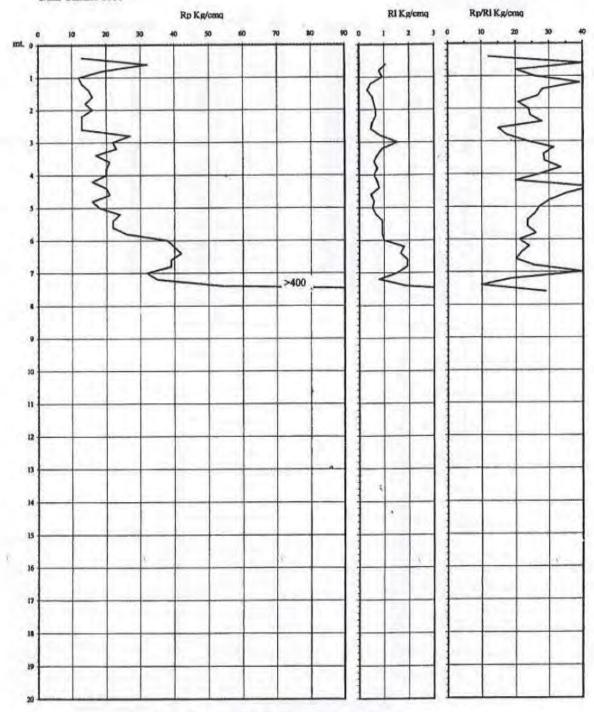
: TRESTINA (PG)

data : sabato 11-02-1995 quota inizio : piano lavoro = piano campagna prof. (alda = 2.50 m da quota inizio

: livello statico di falda ipotizzato dal nº di aste bagnate note

scala profondità 2 1 : 100

Geosystem di Scaparrotti dott.Roberto - Rimini, via Coletti 82/a - 054125542


Prova Penetrometrica Statica

Prova n.: CPT1

Cantiere: Città di Castello (PG) - Titta

Committente: Edilnova Data: Gennaio 2001 Quota inizio: piano campagna

Liv.falda: -1.40 mt. Scala verticale: 1:100

C		I D						liged .	accellerazione massima al snolo
	A S S S S L L S L A		Rp I	RI Rp/RI		ø godi	Dr Ke/canq	Cu Kg/anq	(Seed et al. 1965) coofficiente di sicarezza
	•	0.2 0.4 0.6 0.5		12.10		1	1	0.65 0.95 0.6	1.734 e.i. 1.076
	: '	1.4	15 0 16 0 14 0 16 0	28.13 26.67 1.60 21.00 1.67 24.00 1.67 24.38		1	1	0.65 0.95 0.6 0.75 0.8 0.7 0.65 0.65 1.35 1.15 0.85	n.t. 1.774 n.t. n.t. 1.076 n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t
		24 226 228		1.53 27.36 1.47 15.00 1.87 17.61 1.53 23.57 1.93 11.36		1	1	0.63 1.35 1.1 0.83	n.l. n.l. n.l.
	: .	133	21 20 20 16 20	0.60 21.64 0.73 33.33 0.60 27.27 0.73 20.00 0.80 42.86		1	1	1.05 0.8	1,335 a.l. a.l. 1,319
	. :	4.6 4.8 5.2 5.3	- 21 16 18 24 27	0.47 33.00 0.60 30.00 0.53 27.00 0.67 25.71 0.93 23.57		1	1	0.8 0.9 1.2 1.1	n n n
	0 0 0	12.468 22.2468 22.2468 33.668 4.468 23.368 6.2468 77.468 77.468	132 192 193 194 195 195 195 195 195 195 195 195 195 195	07 40,00 40 20,36 40		+	1	0.8 0.9 1.2 1.1 1.1 1.3 1.9 2 2.1 1.95 1.95	al al al al al al
	• •	7.2 7.4 7.6	39 333 48	1.93 25.43 1.53 40.00 0.80 18.75 1.87 10.00 5.40 28.92	¥	1	1	1.75	1.597 1.1 1.1 2.6
	H	8.2 8.4 8.6	300	3.3)					
	T	8.2 8.4 8.6 9.2 9.4 9.6 9.1 10 10 10							
		10010	4		Ŕ				
			1						
		12	2 1.4 1.8 1.4 1.6			-	-		
	1		2			-	3	+	
	-		2 4.4 4.6 5.2 5.4 5.6 6.2				-	-	
-1			5.6 6.2 6.4				7		11
	+		6.6.6.7 7.7.7.8 8.8.8.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9			-			
	+		7.8 8.2 8.4 8.6				+		
			8.8 9.1 9.4 9.6			-			

Legentida:

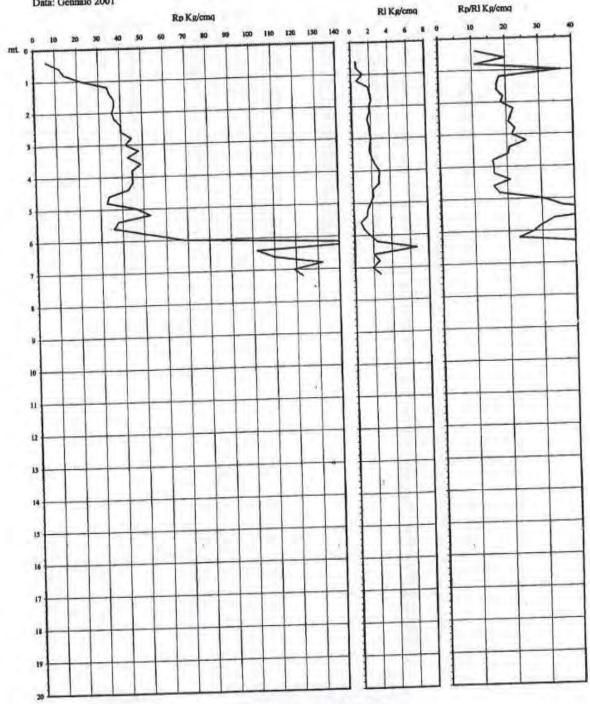
AO argilla organica e terreni miati; AMT argilla molto tenera;
AT argilla tenera; AM argilla modic; AC argilla competta.

AMC argilla molto compatta; ASL argilla subbiosa limosa;
SL asbbia e limo; SLA sabbia limoso argillosa
SS sabbia sciolta; S sabbia; SD sabbia densa

n.l. non liqueficibile

strate liqueficibile

Geosystem di Scaparrotti dott.Roberto - Rimini, via Coletti 82/a - 054125542


Prova Penetrometrica Statica

Prova n.: CPT2

Cantiere: Città di Castello (PG) - Titta

Committente: Edilnova Data: Gennaio 2001 Quota inizio: piano campagna

Liv.falda: -1.20 mt. Scala verticale: 1:100

MTMC	ASS ASLL	S S S				, and a	d'attrito inte slativa e con	Vorifica alla liquofazio magnitudo di 5% g accellerazione massima al suo	
121.1.11	ici iv		mt Rp	RI R	p/RI	ф gradi	Dr Kg/cmq	Cu Kg/cmq	(Seed at al. 1985)
			0.2	0.53 9.60	11.25 20.00 11.05	1	1	0.3 0.6 0.7	
			HANNE THE	0.60 1.87 2.00 2.13	18.21 17.50 17.34 19.14	1		1.7 1.75 1.85 1.85 1.85 2 2.25 2.15 2.45 2.45 2.25 2.25 2.25 2.25 2.25 2.2	n.i
	:		2.7 2.4 40 2.6 40 2.8	99 1,67 1,67	11.43 20.69 72.50	1	1	18 12 2 2 2 2 2 2	a.i. a.i.
	0		3.2 48 3.4 43 3.6 49	2.00 1.93 1.87 2.07	11.72 15.71 10.81 10.42	1	1	215 2.15 2.45	
			4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.80 2.80 2.80 2.07	6.07 6.07 9.81 5.94	1	1	7 23 2 23 2 15	n.i.
-			0.0 6 142 142 143 157 142 142 142 142 142 142 142 142 142 142	0.55 1.27 1.37 1.37 2.13 1.93 1.93 1.93 1.93 1.93 1.93 2.00 1.87 2.47 2.80 2.93 1.87 2.47 2.80 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.14 2.14 2.15 2.15 2.16 2.17 2.18 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.19	11.25 20.000 21.105 21.105 21.105 21.105 21.107 21.	35	0.40	1	n.i. n.j. n.j. n.j. n.j. n.j. n.j. n.j.
	:		5.8 52 6 68 6.2 156 6.4 102	1.773 2 1.773 2 2.477 2 6.773 4	0.00 77.57 3.17 9.35	1	0.56	7,8	2.523 2.532 n.l. 2.549
	:	•	6.6 110 6.8 132 7 119 7.2 123	2.67 6 1.93 4 2.73	1.22	4)	0,63	3	2.557 2.566 2.574
			7.6 7.8 8 8.2						
			8.6 6.8 9.2						
			9.4 9.6 9.8						
			10.4 10.6 10.8			1			
			1.4						
	19		22 24 26 28						
			3 3.2 3.4 3.6				1		
			4.2 4.2 4.4 4.6						
			4.8 5.2 5.4						
	40		22.2.2.6.8.3.3.3.4.4.4.6.8.2.2.4.6.8.2.4.6.8.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2		V				
			6.6 6.8 7						
			7.6						
		18 18 18	1.6						
		19	9.2 9.4 9.6						

Legenda:

AO argilla organica e terreni misti; AMT argilla molto tenera;
AT argilla tenera; AM argilla media; AC argilla compatta
AMC argilla molto competta; ASL argilla sobbiora limosa;
SL sabbia e limo; SLA sabbia limoso argillosa
SS sabbia sciolur; S sabbia; SD sabbia densa

n.L non liquefacibile strato liquefacibile

Geo Probing di Francesca Becartini Sede: Str. Perugia - Ponta Valleceppi, 96 - 06135 Ponte Valleceppi (PG) Cell. 347.6434222 - Tel e Fax: 075.5928321 e-mail:f.becattini@geoprobing.it - sito internet: www.geoprobing.it

Committente: Dott. Geol. Raffaele Rotili Località: Cerbara - Città di Castello (PG)

Data: 21 settembre 2012 Attrezzatura: Pagani TG 63/200

Note:

Quota(m):

Sigla: \CPT 1

Tabulato della prova

		labula	to della	piova		
Profondità (m)	Rp(kg/cmq)	Rp+RI (kg/cmq)	qc(kg/cmq)	fs(kg/cmq)	u(kg/cmq)	fs/qc%
0,2	450	870	45	2,53		5,62
0,4	540	920	54	3,87		7,17
0,6	640	1220	64	3,6		5,62
0,8	580	1120	58	4,47		7,71
1	640	1310	64	5,73		8,95
1,2	570	1430	57	5,33		9,35
1,4	640	1440	64	4,6		7,19
1,6	390	1080	39	3		7,69
1,8	260	710	26	2,4	1	9,23
2	360	720	36	2,07		5,75
2,2	370	680	37	2,93		7,92
2,4	320	760	32	2,47		7,72
2,6	370	740	37	2,67		7,22
2,8	360	760	36	2,47		6,86
3	340	710	34	2,6		7,65
3,2	320	710	32	2,33	Time and the	7,28
3,4	370	720	37	2,67		7,22
3,6	370	770	37	2,8		7,57
3,8	330	750	33	2,6		7,88
4	400	790	40	2,6		6,5
4,2	430	820	43	2,67		6,21
4,4	420	820	42	2,8		6,67
4,6	320	740	32	1,87		5,84
4,8	360	640	36	2,07		5,75
5	360	670	36	7,73		21,47
5,2	520	1680	52	9,2		17,69
5,4	790	2170	79	6,07		7,68
5,6	2820	3730	282	6,2		2,2
5,8	3300	4230	330	4.07		1,23
6	3060	3670	306	5,13		1,68
6,2	3520	4290	352	3,07		0,87
6,4	2770	3230	277	3,47		1,25
6,6	3080	3600	308	3,8		1,23
6,8	2730	3300	273	7,47		2,74
7	2320	3440	232	7,27		3,13
7,2	2430	3520	243	9,53		3,92
7,4	2880	4310	288	10,73		3,73
7,6	2910	4520	291	10,73		3,69

Dott. Geol. Raffaele Rotili Località: Cerbara - Città di Castello (PG) Data:

Località: Cerbara - Città di Castello (PG) Scala 1:50 Attrezzatura: Pagani TG 63/200 Data: 21 settembre 2012 Sigla: /CPT 1

Quota dal p.c.(m):

rgilla limosa dura	2,25	3,061	nc
rgilla molto consistente	2,19	2,312	nc
mo argilloso duro	2,43	6,912	nc
abbia limosa addensata	2,16	nc	42
	ma argilloso duro	ma argilloso duro 2,43	mo argilloso duro 2,43 6,912

P.zza Risorgimento, 1 06070 - S.Mariano CORCIANO (PG)

Rifer 03-10GM1

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 1

2.01PG05-079

- committente :

Dr Geol. Matteo Gabrielli

- quota inizio :

25/03/2010

- lavoro : - località :

- prof. falda :

Plano Campagna 3,35 m da quota inizio

- note :

San Secondo - Città di Castello (PG)

- pa

agina		
et Gillia		

Prof.	Letture d	i campagna laterale		fs /cm²	qc/fs	Prof.	Letture o	li campa latera		fs kg/cm ²	qc/fs
10.20	-								10.10		
0,20	.00	831	177	0,07	-	3,60	31,0	64,0	31,0	2,07	15,0
0,40	9,0	10,0	9,0	0,53	17,0	3,80	36,0	67,0	36,0	2,13	17,0
0,60	10,0	18,0	10,0	0,47	21.0	4,00	32,0	64,0	32,0	2,13	15,0
0,80	11,0	18,0	11,0	0,60	18,0	4,20	39,0	71.0	39,0	2,13	18,0
1,00	10,0	19,0	10,0	0,60	17,0	4,40	41,0	73,0	41,0	2,47	17,0
1,20	13,0	22,0	13.0	1,00	13,0	4,60	55,0	92,0	55,0	2,60	21,0
1,40	13,0	28,0	13,0	0,80	16,0	4,80	26,0	65,0	26,0	2,33	11,0
1,60	12,0	24,0	12,0	1,33	9,0	5,00	25,0	60,0	25,0	2,27	11,0
1,80	27,0	47,0	27,0	1,93	14,0	5,20	24,0	58,0	24,0	1,40	17,0
2,00	30,0	59,0	30,0	2,40	12,0	5,40	21,0	42,0	21,0	2,13	10,0
2,20	29,0	65,0	29,0	2,13	14.0	5,60	30,0	62,0	30,0	1,40	21,0
2,40	36.0	68,0	36,0	2,27	16,0	5,80	32,0	53,0	32,0	2,00	16,0
2,60	31,0	65,0	31,0	2,60	12,0	6,00	30,0	60,0	30,0	2,87	10,0
2,80	39,0	78,0	39,0	2,07	19,0	6,20	65,0	108,0	65,0	1,80	36,0
3,00	35,0	66,0	35,0	2,40	15,0	6,40	135,0	162,0	135,0	10,00	14,0
3,20	29,0	65,0	29,0	2,47	12,0	6,60	300,0	450,0	300,0		-
3,40	32,0	69,0	32,0	2,20	15,0	-	27716	195.40	44.5.00		

PENETROMETRO STATICO tipo PAGANI da 10/20t
 COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità Avanzamento punta 2 cm/s
 punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60 ¹)
 manicotto laterale (superficie 150 cm²)

GTA di Bartoccioni A. e Carmeli L Snc P.zza Risorgimento,1 - 06073 S.Mariano (PG) Tel.Fax: 075-5293635 - e-mail: gta.info@yahoo.it

Riferimento: 11-15FA1

PROVA PENETROMETRICA STATICA AVALORI DI DEGISTENZA

CPT 1

	LETTURE DI CAMPAGNA / VA	LURI DI RESISTENZA	2.0105-162
- committente : - lavoro : - località : - assist, cantiere ;	Dr. Geol. Fiorelli Antonio Costruzione ECA Morra - Città di Castello (PG)	- data : - quota inizio : - falda :	02/11/2015 Piano Campagna Falda non rilevata

ASSIST. CARTIEFE :

note:		rosegue o	CON DPSH	1							
prf	L1	L2	qc	fs	qc/fs	prf	L1	L2	qc	fs	qc/is
m			Kg/cm²	Kg/cm ²		m		*	Kg/cm ^a	Kg/cm ^g	
0,20	****	****	**	1,00	****	1,20	39,0	65,0	39,0	1,67	23,0
0,40	72,0	87,0	72,0 55,0	3,33	22,0 18,0	1,40	61,0	86,0 178,0	61,0 137,0	2,73 3,33	22,0 41,0
0,60	55,0 39.0	105,0 85,0	39,0	2,00	20,0	1,80	400,0	450,0	400,0	*****	
1,00	30,0	60,0	30,0	1,73	17,0						

GTA di Bartoccioni A. e Carmeli L Snc P.zza Risorgimento,1 - 06073 S.Mariano (PG) Tel.Fax: 075-5293635 - e-mail: gta.info@yahoo.it

PROVA PENETROMETRICA STATICA

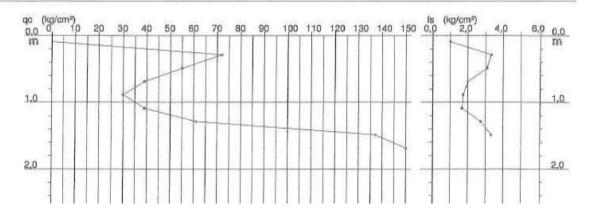

Riferimento: 11-15FA1

DIAGRAMMA DI RESISTENZA

CPT 1

2.0105-162 - committente : Dr. Geol. Fiorelli Antonio - data : 02/11/2015 - lavoro : Costruzione ECA - quota inizio: Piano Campagna - località : Morra - Città di Castello (PG) - falda : Falda non rilevata - assist. cantiere :

Prosegue con DPSH1 - note :

Riferimento: 11-13GL

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 1 2.0105-162

- committente :

Dr. Geol. Gnucci Lucia

- data :

- lavoro : - località :

Ampliamento edificio di civile abitazione Fabrecce - Città di Castello PG

- quota inizio :

- assist, cantiere ;

*	1a	lda	
		1 101 100	0

11/12/2013 Plano Campagna Falda non rilevata

prf	L1	L2	qc	fs	qc/fs	prf	L1	L2	qc	fs	qc/fs
m		*	Kg/cm²	Kg/cm²		m			Kg/cm²	Kg/cm²	A N
0.20		****		0.27	****	4.00	21.0	38.0	21.0	0.93	22.0
0.40	4.0	8.0	4.0	0.73	5.0	4.20	18.0	32.0	18.0	0.87	21.0
0.60	10.0	21.0	10.0	1.00	10.0	4.40	22.0	35.0	22.0	1.07	21.0
0.80	11.0	26.0	11.0	0.67	16.0	4.60	22.0	38.0	22.0	1.13	19.0
1.00	14.0	24.0	14.0	0.87	16.0	4.80	23.0	40.0	23.0	1.47	16.0
1.20	13.0	26.0	13.0	0.80	16.0	5.00	23.0	45.0	23.0	1.20	19.0
1.40	19.0	31.0	19.0	1.07	18.0	5.20	22.0	40.0	22.0	1.27	17.0
1.60	30.0	46.0	30.0	1.27	24.0	5.40	27.0	46.0	27.0	1.33	20.0
1.80	27.0	46.0	27.0	1.13	24.0	5.60	30.0	50.0	30.0	1.60	19.0
2.00	23.0	40.0	23.0	0.93	25.0	5.80	30.0	54.0	30.0	1.87	16.0
2.20	25.0	39.0	25.0	0.73	34.0	6.00	30.0	58.0	30.0	1.87	16.0
2.40	22.0	33.0	22.0	0.80	27.0	6.20	28.0	56.0	28.0	1.87	15.0
2.60	21.0	33.0	21.0	1.00	21.0	6.40	27.0	55.0	27.0	1.60	17.0
2.80	29.0	44.0	29.0	1.47	20.0	6.60	34.0	58.0	34.0	1.67	20.0
3.00	30.0	52.0	30.0	1.47	20.0	6.80	25.0	50.0	25.0	1.53	16.0
3.20	39.0	61.0	39.0	1.47	27.0	7.00	25.0	48,0	25.0	1.53	16.0
3.40	30.0	52.0	30.0	1.67	18.0	7.20	25.0	48.0	25.0	1.33	19.0
3.60	26.0	51.0	26.0	1.20	22.0	7.40	23.0	43.0	23.0	1.27	18.0
3.80	24.0	42.0	24.0	1.13	21.0	7.60	21.0	40.0	21.0	mentage.	****

PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 1

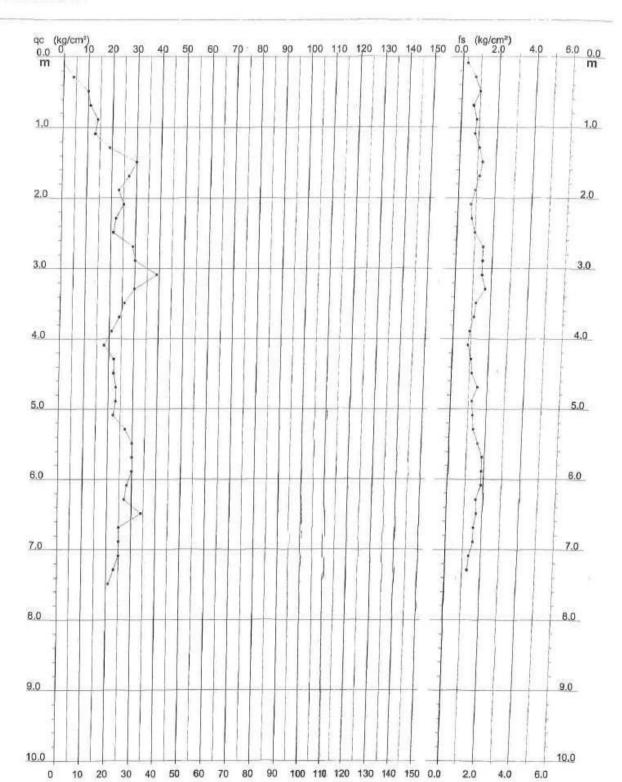
2.0105-162

- committente :

- lavoro : - località : Dr. Geol. Gnucci Lucia

Ampliamento edificio di civile abitazione

- data :


- quota inizio:

11/12/2013 Plano Campagna Falda non rilevata

- assist, cantiere :

Fabrecce - Città di Castello PG

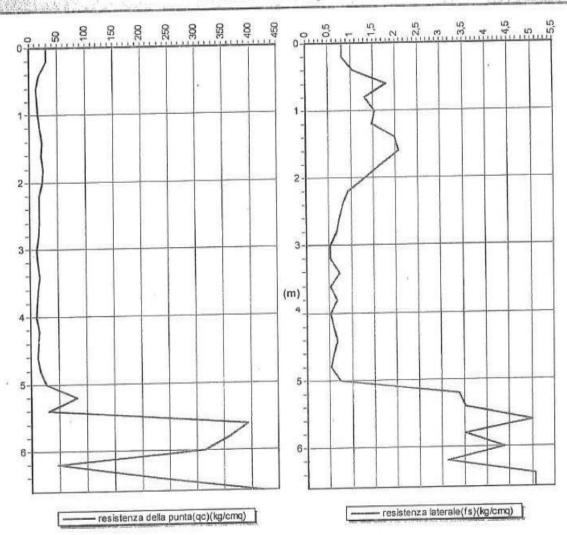
- falda :

Geo Probing di Francesco Recattini Sede: Str. Perugia - Ponte Valleceppi, 96 - 06135 Ponte Valleceppi (PG) Cell. 347.6434222 - Tel e Fax: 075.5928321 e-mall:f.becattini@geoprobling.it - sito internet: www.geoprobling.it

Committente: Dott. Geo. Raffaele Rotili.

Località: Lerchi - Città di Castello (PG)

Data: 26 aprile 2013


Attrezzatura: Pagani TG 63/200

Note:

Quota(m):

Sigla: \CPT 2

Grafico della prova

CPT09

Allegato 4 - Prova penetrometrica statica

CPT 1671-01

TABELLE VALORI RESISTENZA

		30/9/03		Località	Città di C	astello					
	Cantiere:	Vicino Ospedale								XXXXX 00000	
Prof.	Costante Profondi	à prova (m) = 7.5 di trasform = 10 tà faida (m) = assente ture di campagna Laterale Totale	Rp (Kg/cmq)	RL (Kg/cmg)	Rp/RL	Rt (Kg)	Torbe e argille organiche	Limi e argile	Limi sabbiosi - Sabbie limose	Sabbie - Sabbie e ghiale	Colonna Stratigrafica
0.20	F. Minor	Caterary 15th	(Caprimited)	V-9-70-91			1			-	
0.40	15	26	15	0.73	20,5		- 1 - 1	0			
0.60	38	50	38	0.80	47.5			100	0		
0.80	34	70	34	2.40	14.2		0	1			
1.00	23	70	23	3.13	7.3		0				
1.20	21	54	21	2.20	9.5		0				
1,40	21	60	21	2.60	8.1		0			1	
1.60	24	51	24	1.80	13.3		0				
1.80	25	49	25	1.60	15.6			0	AND RESIDEN		
2.00	30	52	30	1.47	20.5		- 6	Q		1 1	
2.20	35	66	35	2.07	16.9			0			
2,40	49	80	49	2.07	23.7			0			
2.60	45	90	45	3.00	15.0		0				
2.80	48	80	48	2.13	22.5			0			
3.00	60	110	60	3.33	18.0			0			
3.20	74	119	74	3.00	24.7		1 1	a		1 1	
3.40	90	136	90	3.07	29.3			0			
3,60	42	100	42	3.87	10.9		0		1		
3,80	44	82	44	2.53	17.4			0			
4.00	54	94	54	2.67	20.3			0			
4.20	64	112	64	3.20	20,0			0			
4.40	45	105	45	4.00	11.3		0				
4.60	64	103	54	2.60	24.6		755	0			
4.80	70	119	70	3.27	21.4			0			Negati materiali
5.00	95	130	95	2.33	40.7				0		
5.20	61	108	61	3.13	19.5		1 - 1	0			
5.40	46	104	46	3.87	11.9		0				
5.60	59	103	59	2.93	20.1			0			Kita ta ta Kata ta ta ta ta ta ta ta ta
5.80	74	110	74	2.40	30.8				0		
6.00	75	118	75	2.87	26.2			0			
6.20	64	131	64	4.47	14.3		0			1	
6,40	66	103	66	2.47	26.8			0		282	**********
6.60	116	140	116	1.60	72.5					0	1888888888888
6.80	65	150	65	5,67	11.5		0				
7.00	51	98	51	3.13	16.3			0			
7.20	72	120	72	3,20	22.5			0			220000000000000000000000000000000000000
7.40	100	137	100	2.47	40.5				0		
7.60	116	200	116	5.60	20.7		-	0			

Viale Unità d'Italia, 6 06019 Umbertide (PG)

Rifer, BERNAR

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 1

2.01PG05-043

- committente : BERNARDINI ANTONIO

- data :

01/07/2008

lavoro :località

CINQUEMIGLIA

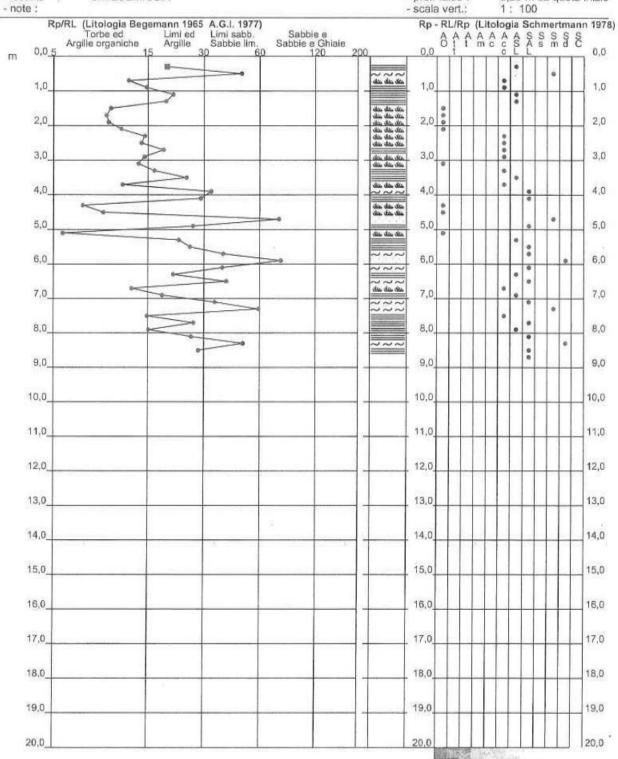
 quota inizio : - prof. falda :

Piano Campagna 6,20 m da quota inizio

- note :

- pagina :

								10-11-11-11			
Prof.	Letture d	i campagna laterale	qc kg	fs /cm²	qc/fs	Prof.	Letture	di campa latera	gna q	c fs kg/cm²	qc/fs
	-	0,0000000000000000000000000000000000000		- Committee			***********				
0,20	at an all the		**	2,33	*****	4,60	47,0	192,0	47,0	5,13	9,0
0,40	84,0	119,0	84,0	4,27	20,0	4,80	82,0	159,0	82,0	1,07	77,0
0,60	65,0	129,0	65,0	1,33	49,0	5,00	101,0	117,0	101,0	3,73	27,0
0,80	57,0	77,0	57,0	4,60	12,0	5,20	65,0	121,0	65,0	11,60	6,0
1,00	38.0	107.0	38,0	2,47	15,0	5,40	91.0	265,0	91,0	4.00	23,0
1,20	44.0	81,0	44,0	2,07	21,0	5,60	101,0	161,0	101,0	3,87	26,0
1,40	39.0	70.0	39,0	2,00	20,0	5,80	120,0	178,0	120.0	3,07	39.0
1,60	36,0	66,0	36,0	3,60	10,0	6,00	136,0	182,0	136,0	1,73	78,0
1,80	24,0	78,0	24,0	2,53	9,0	6,20	98.0	124.0	98,0	2,53	39,0
2,00	24.0	62,0	24,0	2,47	10,0	6,40	71,0	109,0	71,0	3,33	21,0
2,20	25,0	62,0	25,0	2,20	11,0	6,60	65,0	115,0	65,0	1,60	41,0
2,40	24,0	57,0	24,0	1,60	15,0	6,80	43,0	67,0	43,0	3,33	13,0
2,60	28,0	52,0	28,0	1,93	14,0	7,00	61,0	111,0	61,0	3,27	19,0
2,80	29,0	58,0	29,0	1,53	19,0	7,20	73,0	122,0	73.0	2,07	35,0
3,00	28,0	51,0	28,0	1,87	15,0	7,40	88,0	119,0	88,0	1,47	60,0
3,20	14,0	42,0	14,0	1,00	14.0	7,60	57.0	79.0	57.0	3,67	16,0
3,40	26,0	41,0	26,0	1,53	17,0	7,80	69,0	124,0	69,0	2,53	27,0
3,60	50,0	73,0	50,0	2,00	25,0	8,00	76,0	114,0	76,0	4,80	16.0
3,80	90,0	120,0	90,0	7,80	12.0	8,20	85,0	157.0	85,0	3,20	27,0
4,00	117,0		117,0	3,47	34,0	8,40	149,0	197,0	149,0	3,00	50,0
4,20	103,0	155,0	103,0	3,47	30,0	8,60	185,0	230,0	185,0	6,40	29,0
4,40	69,0	121,0	69,0	9,67	7,0	8,80	296,0	392,0	296,0	enman.	*****


PENETROMETRO STATICO tipo PAGANI da 10/20t
 COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità Avanzamento punta 2 cm/s
 punta meccanica tipo Begemann \(\varphi = 35.7 \) mm (area punta 10 cm² - apertura 60°)
 manicotto laterale (superficie 150 cm²)

PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 1

2.01PG05-043

- committente : BERNARDINI ANTONIO - data : 01/07/2008
- lavoro : - quota inizio : Piano Campagna
- località : CINQUEMIGLIA - prof. falda : 6,20 m da quota inizio

Rifer, BERNARD

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 2 2.01PG05-043

- committente :

BERNARDINI ANTONIO

- data :

01/07/2008

 lavoro - località

- note :

CINQUEMIGLIA

- quota inizio: - prof. falda :

Piano Campagna 6,00 m da quota inizio

- pagina :

Prof.	Letture d	li campagna laterale		fs /cm²	qc/fs	Prof.	Letture	di campa latera		fs kg/cm²	qc/fs
0.00		Tanasa.		120.00	acervace.	1 440	400.0	224.0			en n
0,20			45.0	0,47	0.0	4,40	168,0	221,0	168,0	2,80	60,0
0,40	15,0	22,0	15,0	2,47	6,0	4,60	101,0	143,0	101.0	3,47	29,0
0,60	20,0	57,0	20,0	1,60	12,0	4,80	115,0	167,0	115,0		
0,80	54,0	78,0	54,0	1,80	30,0	5,00	193,0	142,0	193,0	2,40	80,0
1,00	46,0	73,0	46,0	2,27	20,0	5,20	74,0	110,0	74,0	3,73	20,0
1,20	47,0	81,0	47.0	3,47	14,0	5,40	63,0	119,0	63,0	2,93	21,0
1,40	37,0	89,0	37,0	3,53	10,0	5,60	85,0	129,0	85,0	3,67	23,0
1,60	34,0	87,0	34.0	2,80	12,0	5,80	117,0	172,0	117.0	3,07	38,0
1,80	29,0	71,0	29,0	1,47	20,0	6,00	140,0	186,0	140,0	2,73	51,0
2,00	22,0	44.0	22,0	2,20	10,0	6,20	105,0	146.0	105.0	2,47	43,0
2,20	21,0	54,0	21,0	1,67	13,0	6,40	71,0	108.0	71,0	3.73	19,0
2,40	27,0	52,0	27,0	1,27	21,0	6,60	62,0	118,0	62,0	3,33	19,0
2,60	26,0	45.0	26,0	1,80	14,0	6,80	55,0	105,0	55,0	3,47	16,0
2,80	44,0	71,0	44,0	2,93	15,0	7,00	49,0	101,0	49,0	3,47	14,0
3,00	39,0	83,0	39,0	2,33	17,0	7,20.	51,0	103,0	51.0	3,47	15,0
3,20	76,0	111,0	76,0	2,93	26,0	7,40	54,0	106.0	54.0	2,60	21,0
3,40	80,0	124,0	80,0	3,33	24,0	7,60	108.0	147.0	108,0	5,60	19,0
3,60	91,0	141.0	91,0	2,20	41,0	7,80	137,0	221,0	137,0	2,80	49,0
3,80	87,0	120,0	87,0	3,07	28,0	8,00	190,0	232.0	190.0	7.07	27,0
	179,0		179.0	7,27	25,0	8,20	285,0	391,0	285,0	7,07	21,0
4,00			271.0	3.53	77.0	0,20	200,0	001,0	200,0	THE PARTY OF THE P	
4,20	271.0	300,0	211.0	3,33	11.4	1					

PENETROMETRO STATICO tipo PAGANI da 10/20t
 COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità Avanzamento punta 2 cm/s
 punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°)
 manicotto laterale (superficie 150 cm²)

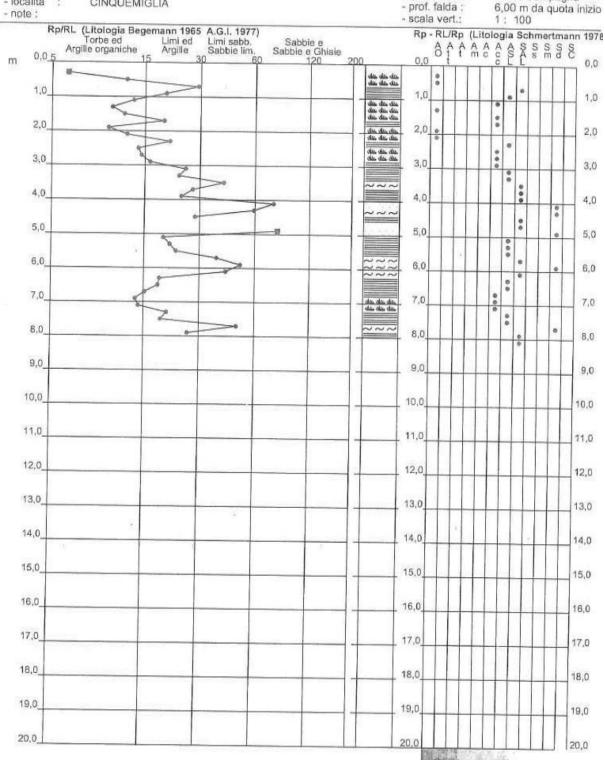
PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 2

2.01PG05-043

- committente : - lavoro

BERNARDINI ANTONIO


- località

CINQUEMIGLIA

- data :

- quota inizio: - prof. falda :

01/07/2008 Piano Campagna

PROVA ... Nr.1

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPM (DL030 10) (Medium) 14/03/2006 4,50 mt

Profondità (m)	Nr. Colpi	Nr. Colpi Rivestimento	Calcolo coeff, riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres, ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,10	5	0	0,857	14,30	16,70	0,72	0,83
0,20	4	0	0,855	11,42	13,36	0,57	0,67
0,30	5	0	0,853	14,24	16,70	0,71	0,83
0,40	6	0	0,851	17,05	20,04	0,85	1,00
0,50	8	0	0,849	22,68	26,72	1,13	1,34
0,60	8	0	0,847	22,63	26,72	1,13	1,34
0,70	6	0	0,845	16,93	20,04	0,85	1,00
0,80	7	0	0,843	19,71	23,38	0,99	1,17
0,90	7	0	0,842	18,67	22,18	0,93	1,11
1,00	15	0	0,790	37,54	47,54	1,88	2,38
1,10	15	0	0,788	37,46	47,54	1,87	2,38
1,20	19	0	0,786	47,34	60,21	2,37	3,01
1,30	19	0	0,785	47,24	60,21	2,36	3,01
1,40	17	0	0,783	42,18	53,87	2,11	2,69
1,50	19	0	0,781	47,04	60,21	2,35	3,01
1,60	18	0	0,780	44,47	57,04	2,22	2,85
1,70	18	0	0,778	44,37	57,04	2,22	2,85
1,80	19	0	0,776	46,74	60,21	2,34	3,01
1,90	19	0	0,775	44,38	57,29	2,22	2,86
2,00	18	0	0,773	41,96	54,27	2,10	2,71
2,10	18	0	0,772	41,88	54,27	2,09	2,71
2,20	23	0	0,720	49,94	69,35	2,50	3,47
2,30	23	0	0,719	49,83	69,35	2,49	3,47
2,40	24	0	0,717	51,89	72,36	2,59	3,62
2,50	26	0	0,716	56,10	78,39	2,81	3,92
2,60	28	0	0,714	60,30	84,42	3,01	4,22
2,70	32	0	0,663	63,95	96,48	3,20	4,82
2,80	33	0	0,661	65,81	99,50	3,29	4,97
2,90	33	0	0,660	62,63	94,89	3,13	4,74
3,00	34	0	0,659	64,39	97,76	3,22	4,89
3,10	27	0	0,707	54,91	77,64	2,75	3,88
3,20	29	0	0,706	58,87	83,39	2,94	4,17
3,30	34	0	0,655	64,01	97,76	3,20	4,89
3,40	36	0	0,653	67,64	103,51	3,38	5,18
3,50	54	0	0,602	93,49	155,27	4,67	7,76
3,60	45	0	0,601	77,75	129,39	3,89	6,47
3,70	45	0	0,600	77,59	129,39	3,88	6,47
3,80	43	0	0,598	73,99	123,64	3,70	6,18
3,90	45	0	0,597	73,85	123,66	3,69	6,18
4,00	35	0	0,646	62,14	96,18	3,11	4,81
4,10	38	0	0,645	67,34	104,43	3,37	5,22
4,20	43	0	0,594	70,16	118,17	3,51	5,91
4,30	45	0	0,593	73,28	123,66	3,66	6,18
4,40	56	0	0,591	91,02	153,89	4,55	7,69
4,50	67	0	0,590	108,69	184,12	5,43	9,21

STIMA PARAMETRI GEOTECNICI PROVA Nr.1

TERRENI INCOERENTI

PROVA ... Nr.2

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPM (DL030 10) (Medium) 14/03/2006 4,00 mt

Profondità (m)	Nr. Colpi	Nr. Colpi Rivestimento	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,10	4	0	0,857	11,44	13,36	0,57	0,67
0,20	3	0	0,855	8,56		0,43	0,50
0,30	4	0	0,853	11,39	13,36	0,57	0,67
0,40	3	0	0,851	8,52	10,02	0,43	0,50
0,50	5	0	0,849	14,17	16,70	0,71	0,83
0,60	5	0	0,847	14,14	16,70	0,71	0,83
0,70	4	0	0,845	11,29	13,36	0,56	0,67
0,80	4	0		11,27	13,36	0,56	0,67
0,90	3	0	0,842	8,00	9,51	0,40	0,48
1,00	4	0		10,64	12,68	0,53	0,63
1,10	3	0	0,838	7,97	9,51	0,40	0,48
1,20	3	0	0,836	7,95	9,51	0,40	0,48
1,30	6	0	0,835	15,87	19,01	0,79	0,95
1,40	7	0	0,833	18,48	22,18	0,92	1,11
1,50	7	0	0,831	18,44	22,18	0,92	1,11
1,60	7	0	0,830	18,40	22,18	0,92	1,11
1,70	8	0	0,828	20,99	25,35	1,05	1,27
1,80	9	0	0,826	23,57	28,52	1,18	1,43
1,90	9	0	0,825	22,38	27,14	1,12	1,36
2,00	18	0	0,773	41,96	54,27	2,10	2,71
2,10	24	0	0,722	52,22	72,36	2,61	3,62
2,20	26	0	0,720	56,45	78,39	2,82	3,92
2,30	34	0	0,669	68,54	102,51	3,43	5,13
2,40	28	0	0,717	60,54	84,42	3,03	4,22
2,50	26	0	0,716	56,10	78,39	2,81	3,92
2,60	28	0	0,714	60,30	84,42	3,01	4,22
2,70	26	0	0,713	55,88	78,39	2,79	3,92
2,80	28	0	0,711	60,06	84,42	3,00	4,22
2,90	31	0	0,660	58,83	89,14	2,94	4,46
3,00	26	0	0,709	52,98	74,76	2,65	3,74
3,10	27	0	0,707	54,91	77,64	2,75	3,88
3,20	32	0	0,656	60,36	92,01	3,02	4,60
3,30	28	0	0,705	56,74	80,51	2,84	4,03
3,40	41	0	0,603	71,14	117,89	3,56	5,89
3,50	43	0	0,602	74,45	123,64	3,72	6,18
3,60	45	0	0,601	77,75	129,39	3,89	6,47
3,70	48	0	0,600	82,76	138,02	4,14	6,90
3,80	54	0	0,598	92,92	155,27	4,65	7,76
3,90	49	0	0,597	80,42	134,66	4,02	6,73
4,00	56	0	0,596	91,72	153,89	4,59	7,69

Geotech del Dr. Carrino e del Dr. Manni

via Marconi 55 - 06038 Spello (Pg)

- committente :

Riferimento: BRB

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

DITTA BRB SNC di Rossi Alessio & C.

DIN 1

25/02/2013 0.0

- data :

	lavoro : località note :		nd. Cerbara	ossi Alessio & C.				a inizio : falda :	25/02/20 0.0 Falda no 1	n rilevata
Pr	of.(m)	N(colpi p)	Rpd(kg/cm²)	asta	Prof	f.(m)	N(colpi p)	Rpd(kg/	cm²)	asta
0,00	0,20	3	22,3	1	3,00 -	3,20	6	36,1	í	4
0,20 -		2	14,9	1	3,20 -	3,40	5 5	30,1		4
0,40 -		7	52,1	1	3,40 -	3,60	5	30,1		4
0,60 -		7	52,1	1	3,60 -	3,80	4	24,1		4
0,80 -		6	41,4	2	3,80 -	4,00	5	28,3		5
1,00 -		12	82,9	2	4,00 -	4,20	4	22,7		5
1,20 -		13	89,8	2	4,20 -	4,40	5	28,3		5
1,40 -	1,60	9	62,1	2	4,40 -	4.60		28,3		5
1,60 -	1,80	5	34,5	2	4,60 -		5 5	28,3		5
1,80 -	2,00	4	25,7	3	4.80 -	5,00	5	26,7		6
2,00 -	2,20	3	19,3	3	5,00 -		4	21,4		6
2,20 -	2,40	2	12,9	3	5,20 -		6	32,1		6
2,40 -	2,60	5	32,2	3	5,40 -		7	37,4		
2,60 -	2,80	12	77,2	3	5,60 -		9	48,1		6
2,80 -	3,00	6	36,1	4	122	-142	7	1011		

⁻ PENETROMETRO DINAMICO tipo : DPSH (S. Heavy) - M (massa battente)= 63,50 kg - H (altezza caduta)= 0,75 m - Numero Colpi Punta N = N(20) [δ = 20 cm] - A (area punta)= 20,00 cm² - D(diam. punta)= 50,50 mm - Uso rivestimento / fanghi iniezione : NO

G E O I N Studi		<u>U</u>	4. I
COMMITTENTE: Corne CANTIERE : Morra DATA: 11.11.96	финивория вомице да пасти планомили из изич	LOCALITA': Mc PROF.FALDA: FATTORE DI SIC	
PROFONDITA'	Numero Colpi	Kg/cm²	Qa Amm Kg/cm²
00000000000000000000000000000000000000	888700757731898776318859708464433333334545656555655677	3333777728221885834921009696317118888889951517171227222711 333377772822188583492100959696317118888889951517171227222711 353366628221788482100858505755583888899515171712272222711 35546662822218858349210095969631711888888995151717122222227111	33337777404440955500490110096960585544444330808686808007000711 355666082017848348210085851000055555445390808686808007000711 5555466414408454098760035408001111111111111111111111111111111111

G E O I N Studio Associato

PROVAN. 2

COMMITTENTE: Corneli Luigi & C. CANTIERE : Morra

LOCALITA' : Morra PROF.FALDA: 1.00

DATA: 11.11.96		PROF FALDA: FATTORE DI SICI	JREZZA: 10.0
PROFONDITA'	Numero Colpi	Kg/cm²	Qa Amm Kg/cm²
00000000000000000000000000000000000000	115040001111111111111111111111111111111	7737732266666666666666611628551333333332666662953938338717703373003056663112866666666525551115276660555555555555555555555555555555555	77377311111111111606661160800511111111115888888530393835871705337800357 663663211100000000000011000442000000000000000

Rifer. : DPSH-1

PROVA PENETROMETR. DINAMICA n. 1 ABELLE VALORI RESISTENZA

PENETROMETRO BINAMICO tipo SUPERPESANTE - (DPSR) M uso rivestimento/fanghi i M = 63,5 kg - R = 0.75 m - λ = 20,00 cm² - D = 50.5 me N = N(20) [0 = 20 cm]

uso rivestimento/fanghi iniezione : NO

Cantiere :

quota inizio : --prof. falda = ---

Località : note :

data :

				and the second second second second			
prof.(s)	X (colpi)	Rpd(kg/cm²)	asta	prof.(m)	X (colpi)	Rpd(kg/cm²)	asta
0.00- 0.20	1.0	42.9	1	3.80- 4.00	5.0	39.5	5
0.20- 0.40	4.0	42.9	1	4.00- 4.20	5.0	39.5	5
0.40- 0.60	2.0	21.5	1	4.20- 4.40	5.0	39.5	5
0.60- 0.80	2.0	19.7	2	4.40- 4.60	6.0	47.4	1
0.80- 1.00	2.0	19.7	2	4.60- 4.80	7.0	51.9	6
1.00- 1.20	3.0	29.6	2	4.80- 5.00	7.0	51.9	6
1.20- 1.40	3.0	29.6	2	5.00- 5.20	7.0	51.9	6
1.40- 1.60	3.0	29.6	2	5.20- 5.40	9.0	66.7	6
60- 1.80	3.0	27.3	3	5.40- 5.60	9.0	66.7	6
.80- 2.00	3.0	27.3	3	5.60- 5.80	8.0	55.8	1
2.00- 2.20	3.0	27.3	3	5.80- 6.00	8.0	55.8	7
2.20- 2.40	4.0	36.4	3	6.00- 6.20	9.0	62.8	1
2.40- 2.60	4.0	36.4	3	6.20- 6.40	9.0	62.8	1
2.60- 2.80	5.0	42.3	4	5.40- 6.60	9.0	62.8	1
2.80- 3.00	5.0	42.3	4	5.60- 6.80	10.0	66.0	8
3.00- 3.20	5.0	42.3	4	6.80- 7.00	10.0	66.0	8
3.20- 3.40	4.0	33.8	4	7.00- 7.20	10.0	66.0	8
3.40- 3.60	3.0	25.4	4	7.20- 7.40	10.0	66.0	8
3.60- 3.80	3.0	23.7	5	7.40- 7.60	10.0	66.0	8

GTA di Bartoccioni A. e Carmeli L Snc

P.zza Risorgimento,1 - 06073 S.Mariano (PG) Tel.Fax: 075-5293635 - e-mail: gta.info@yahoo.it

Rapporto di prova nº: 11-15FA1

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

DIN 1

- committente :

Dr. Geol. Antonio Fiorelli

- data prova :

02/11/2015

lavoro :località :

Costruzione ECA Morra Città di Castello

- quota inizio: - prof. falda :

- 1,80 m dal p.c. 4,00 m da quota inizio

- note :

In prosecuzione della CPT1

note.		m P							
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	asta	Prol	(m).	N(colpi p)	Rpd(kg/cm²)	asta
0,00 -	0.20	****	****	1	3,60 -	3,80	2	15,8	5 5 5 6 6 6
0,20 -	0,40	****	00 00 00 m	2	3,80 -	4,00	2222323333	15,8	5
0,40 -	0,60			2	4,00 -	4,20	2	15,8	5
0,60 -	0,80	****	and the second test	2	4,20 -	4,40	2	14,8	6
0,80 -	1,00	warmer.		2	4,40 -	4,60	3	22,2	6
1,00 -	1,20		****		4,60 -	4.80	2	14,8	6
1,20 -	1,40	4.000	W 2000	3	4,80 -	5,00	2	14,8	6
1,40 -	1,60			3	5,00 -	5,20	3	22,2	6
1,60 -	1,80	23	209,4	3	5,20 -	5,40	3	20,9	7
1,80 -	2,00	7	63.7	3	5,40 -	5,60	3	20,9	7
2,00 -	2,20	3	27,3	3	5,60 -	5,80	4	27,9	7
2,20 -	2,40	3	25,4	4	5,80 -	6,00	4	27,9	7
2,40 -	2,60		25,4	4	6,00 -	6,20	4	27,9	7
2,60 -	2,80	3	67,7	4	6.20 -	6,40	4	26,4	8
2,80 -	3,00	3	25,4	4	6,40 -	6,60	4	26,4	8
3,00 -	3,20	4	33,8	4	6,60 -	6,80	5	33,0	8
3,20 -	3,40	2	15,8	5	6.80 -	7,00	5 6 5	39,6	8
3,40 -	3,60	4	31,6	5	7,00 -	7,20	5	33,0	8

⁻ PENETROMETRO DINAMICO tipo : TG 63-100 EML.C

⁻ M (massa battente)= 63,50 kg - H (altezza caduta)= 0,75 m - A (area punta)= $20,0000 \text{ cm}^2$ - D(diam. punta)= 50,50 mm - Numero Colpi Punta N = N(20) [δ = 20 cm] - Uso rivestimento / fanghi inlezione : NO

pag.1

Geo Probing di Francesco Becattirii Sede: Str. Perugia - Ponte Valleceppi, 96 - 06135 Ponte Valleceppi (P6) Cell, 347.6434222 - Tel e Fax: 075.5928321 e-mail:f,becattini@geoprobing.it - sito internet: www.geoprobing.it

Commit	tente: Dott	Geol. And	rea Santin	ni							
Località:		a - Città d						Qu	ota s.l.m.(m):	
Data iniz	zio cantiere	21 giu	igno 2016	C	ata fine can	tiere:	21 giugno	2016	Sigla:	DPSH 1	
Attrezza	tura: Pagar	ni TG 63/2	00								
	ate geograf										
			TABELL	A DAT	PROVA PE	NETROM	ETRICA DI	NAMICA	- 17	10000	7/4
N.	Prof.(m) N.punta	N.riv.to	Nspt e	q. N.riv.c.	N.	Prof.(m)	N.punta	N.riv.to	Nspt eq.	N.riv.c.
1 2	0,3 0,5 0,7	11		17 21 32	-5-1						. 1000 00000000
2	0.5	14		21			-	-			
4	0.9	21		32							
5	1.1	14		21							
6	1,3 1,5	10		15							
7	1,5	9		14							
8	1,7 1,9	9		18 18							
9	1,9	12									
10	2.1	7		11							
11	2,3 2,5 2,7 2,9	4		6 5							
13	2.7	3		5							
13 14	29	4					1				
15	3.1	3		5							
16	3,1 3,3 3,5 3,7	4		6 5 6 6 8							17.
17	3,5	4		6				U.			
18	3,7	5		8							
19	3.9	9		14							
18 19 20 21 22	4,1 4,3 4,5 4,7	4 3 4 3 4 5 9 9 6 4		14 14 9	_	The state of	_				
22	4,5	0		- 4			-				
23	4.7	6		6 9 8	-		1				
23 24 25 26 27	4.9	5		8							
25	4,9 5,1 5,3 5,5 5,7 5,9	5 5 5									
26	5,3	5		8							
27	5,5	6		9							
28	5,7	5		8							
29	5,9	6		8 8 9 8 9							
28 29 30 31 32 33	6.1	6		9							
31	6,3 6,5	7		11	-	1	-				
33	6,7	6		9 11	_		-				
34	6.9	7		11							
34 35	6.9 7.1			14			0				
36	7.3	9 9 8 8		14 12 12							
36 37	7,3 7,5	8		12	1/6						
38	7.7	8		12							
39 40	7,9 8,1 8,3 8,5	10		15							
40	8,1	13 13 12		20							
41 42	8,3	13		20 18		-					
43	8,7	12		18		-					
44	8,9	13		20							
45	9.1	14		21							
46	9,1 9,3	15		23			10				
		1				9-10-	The second				

Geo Probing d Francesco Becatting Sede: Str. Perugia - Ponte Valleceppi, 96 - 06135 Ponte Valleceppi (PG) Cell, 347,6434222 - Tel e Fax: 075,5928321 e-mail:f.becattini@geoprobing.it - sito internet: www.geoprobing.it

Committente: Dott. Geol. Raffaele Rotili Località: Lerchi - Città di Castello (PG)

Data: 26 aprile 2013

Attrezzatura: Pagani TG 63/200

Note:

Quota(m):

Sigla: \DPSH 1

16.	100	rabu	iato della p		400 0 0 0 0
		N. colpi della punta misurato	N,colpi del rivestimento	N. colpi SPT equivalenti	N. colpi del rivestimento corretto
1	0,2	8		12	
t	0,4	4		6	
r	0,6	3		4	
t	8,0	3 '		4	
r	1	3		4	7
r	1,2	3		4	
-	1,4	4		6	
1	1,6	3 .		4	
1	1,8	2		3	
r	2	4		6	
1	2,2	2		3	
T	2,4	2	W	3	
r	2,6	8		12	
r	2,8	5	40	8 .	
r	3	3		4	
	3,2	5		8	
1	3,4	2		3	
	3,6	2		3	
	3,8	2		3	
	4	2		3	
r	4,2	3		4	
r	4,4	5			
t	4,6	8		12	
r	4,8	6		9 .	
	5	10		15	
r	5,2	11		16	
r	5,4	17		26	2701
r	5,6	13		20	
r	5,8	10		15	
	6	13		20	
	6,2	7		10	
r	6,4	7		10	
-	6,6	6		9	
-	6,8	9		14	
	7	6		9	
-	7,2	6		9	

Sede: Str. Perugia - Pante Valleceppi, 96 - 06135 Ponte Valleceppi (PG) Cell. 347.6434222 - Tel e Fax: 075.5928321 e-mail:f.becattini@geoprobing.it - sito internet: www.geoprobing.it

Committente: Dott. Geol. Raffaele Rotili

Località: La Collina - Fraccano - Città di Castello (PG)

Data: 15 dicembre 2011

Attrezzatura: Pagani TG 63/200

Note:

Quota(m):

Sigla: \DPSH 1

Tabulato della prova

Profondità (m)	N. colpi della punta misurato	N.colpi del rivestimento	N, colpi SPT equivalenti	N. colpi del rivestimento corretto
0,2	. 5		8	
0,4	4		6	
0,6	8		12	
0,8	4		6	
1	1		2	
1,2	3		4	
1,4	6		9	
1,6	5		8	
1,8	4		6	
2	5		8	
2,2	6		9	
2,4	7		10	
2,6	10		15	
2,8	11		16	
3	12		18	
3,2	14		21	
3,4	11		16	
3,6	13		20	
3,8	15		22	
4	16		24	
4,2	47		70	
4.4	67		100	

DPT11

Sede: Str. Perugia - Ponte Valleceppi, 96 - 06135 Ponte Valleceppi (PG) Cell, 347.6434222 - Tel e Fax: 075.5928321 e-mail:f,becattini@geoprobing.it - sito internet: www.geoprobing.it

Committente: Dott, Geol, Raffaele Rotili

Località: La Collina - Fraccano - Città di Castello (PG)

Data: 15 dicembre 2011

Attrezzatura: Pagani TG 63/200

Note:

Quota(m):

Sigla: \DPSH 2

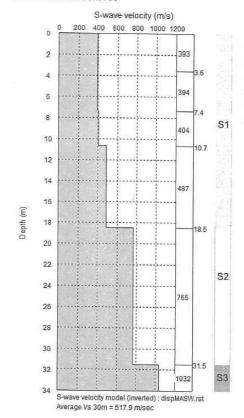
Tabulato della prova

		rate della p	Programme and the second secon	
Profondità (m)	N. colpi della punta misurato	N.colpi del rivestimento	N. colpi SPT equivalenti	N. colpi del rivestimento corretto
0,2	6		9	
0,4	5		8	
0,6	22		33	
0,8	18		27	
1	13		20	
1,2	7		10	
1,4	10		15	
1,6	10		15	
1,8	11		16	
2	9		14	
2,2	14		21	
2,4	60		90	
2,6	67		100	

MW01

Inoltre si è utilizzata una indagine in sismica attiva MASW eseguita a circa 15 m di distanza che ha permesso di definire il modello sismo-stratigrafico del sito con il riconoscimento di n.4 sismo-strati principali correlabili con i livelli geologici riconosciuti con il dato di pozzo.

MODELLO RICAVATO							
	Vsv (m/s)	Vsh (m/s)	Spessore	Densità (gr/cm³)	Modulo di taglio (Mpa)		
STRATO 1	160	162	4.00	1.78	45		
STRATO 2	450	429	9.70	2.04	40		
STRATO 3	534	508	11.00	2.08	593		
STRATO 4	758	747		2,13	1226		


	Val	ori stimati (di Vp e dei mo	duli elastici	
	Vp (m/s)	Poisson	Bulk (Mpa)	Young's (Mpa)	Lamè (Mpa)
STRATO 1	317	0.34	118	121	88
STRATO 2	896	0.33	1080	1093	806
STRATO 3	1104	0.35	1743	1597	1348
STRATO 4	1390	0,32	2488	3159	1671

Definizione dei sismostrati e valori stimati

Lo strato 1 viene identificato come detrito di falda, mentre gli strati 2, 3 e 4 sono attribuibili ai depositi alluvionali terrazzati costituiti da sabbie ghiaiose e limi con grado di addensamento crescente con la profondità.

MW02

MODELLO DI VELOCITÀ Vs

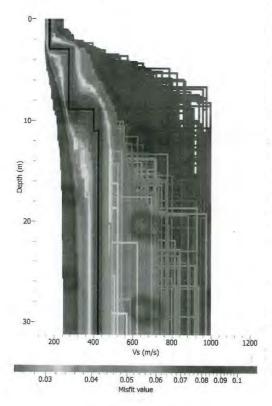
INTERPRETAZIONE STRATIGRAFICA

Nel grafico a lato è mostrato il profilo verticale Vs caratterizzato dall'errore minimo rispetto alla curva di dispersione sperimentale. La sismostratigrafia ottenuta è descritta sinteticamente di seguito. Si precisa che le indagini eseguite mediano le condizioni stratigrafiche nel volume di sottosuolo posto al di sotto dell'intero stendimento geofonico. Altri modelli, caratterizzati da un errore leggermente superiore, dove gli strati presentano diversi valori di spessore e velocità, sono ugualmente possibili e pressoché equivalenti dal punto di vista analitico e geologico.

- Unità superficiale con Vs comprese fra 393 e 487 m/sec, costituita da terreni molto addensati e/o consistenti e/o roccia tenera (e.g. marne, argilliti, siltiti, rocce intensamente fratturate).
- S2 Unità intermedia con Vs pari a 765, costituita da rocce tenere.
- S3 Unità profonda con Vs superiori a 800 m/sec., riferibile dunque a basamento in senso sismico (NTC 2008).

Vs30 E CATEGORIA DI SOTTOSUOLO (DM 14/01/2008)

Il valore del parametro Vs₅₀ è pari a 517 m/s. Tale parametro, unitamente alle caratteristiche stratigrafiche del profilo Vs, colloca il sito nella categoria di sottosuolo B "Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi tra 360 m/s e 800 m/s".


pag. 7

CALCOLO DEL PARAMETRO $V_{\rm S30}$ lungo lo stendimento A-B (in base a quanto previsto dalle N.T.C. 14/01/2008)

hi=(m)	Vsi=(m/s)	hi/vs	V 5 30	=	$\frac{30}{\sum \frac{h_i}{}} =$	353,1165	m/s
1,875	321	0,005841			$L_{i=1,N}V_{i}$		
1,875	321	0,005841					
1,875	323	0,005805					
1,875	323	0,005805					
1,875	331	0,005665					
1,875	331	0,005665					
1,875	334	0,005614					
1,875	334	0,005614					
1,875	352	0,005327					
1,875	352	0,005327					
1,875	369	0,005081					
1,875	369	0,005081					
1,875	409	0,004584					
1,875	409	0,004584					
1,875	411	0,004562					
1,875	411	0,004562					
30		0,084958					

Dai risultati del profilo di sismica a rifrazione si hanno valori delle Vs30 pari a 353 m/sec. Quindi il suolo è associabile al tipo "C".

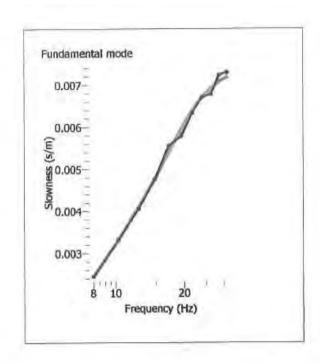
MODELLO DI VELOCITÀ Vs

MW04

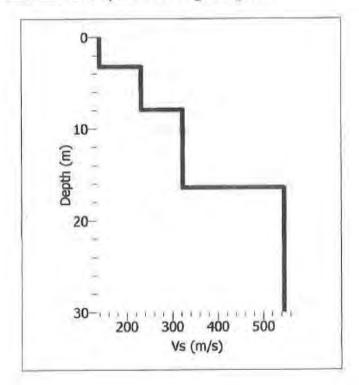
INTERPRETAZIONE STRATIGRAFICA

Nel grafico a lato sono mostrati i profili verticali Vs caratterizzato da misfit inferiore a 0.1 rispetto alla curva di dispersione sperimentale. In nero il modello con misfit minimo. La sismostratigrafia ottenuta è descritta sinteticamente di seguito. Si precisa che l'indagine media le condizioni stratigrafiche nel volume di sottosuolo posto al di sotto dell'intero stendimento geofonico. Altri modelli, caratterizzati da un errore leggermente superiore, dove gli strati presentano diversi valori di spessore e velocità, sono ugualmente possibili e pressoché equivalenti dal punto di vista analitico e geologico.

Il profilo è caratterizzato dalla presenza di tre sismostrati e da velocità crescente della velocità con la profondità.

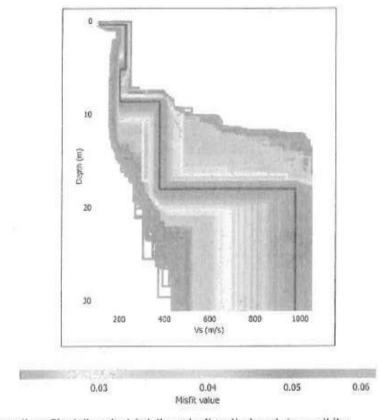

Lo strato superficiale, dello spessore di 2.9 metri è caratterizzato da velocità di circa 170 m/s, ad indicare terreni scarsamente addensati/consistenti, correlabili con la coltre agraria ed i terreni immediatamente sottostanti, principalmente a granulometria fine.

Lo strato intermedio raggiunge la profondità di 8.8 metri ed ha velocità di 269 m/s, ad indicare terreni mediamente addensati/consistenti. Nel contesto geologico in esame è correlabile con i terreni a granulometria intermedia dei depositi fluvio-lacustri plio-pleistocenici.


Lo strato basale, caratterizzato da velocità attorno a 400 m/s indica la presenza di materiali molto addensati/consistenti, compatibili ancora con la presenza dei depositi fluvio-lacustri a granulometria da fine ad intermedia.

Vs30 E CATEGORIA DI SOTTOSUOLO (DM 14/01/2008)

Per il modello con il misfit minimo il valore di Vs₃₀ è pari a 335 m/s. Tale valore, unitamente all'assenza di basamento sismico, colloca il sito nella categoria di sottosuolo C "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs₃₀ compresi tra 180 e 360 m/s". Oltre il 93% dei modelli elaborati con misfit inferiore a 0.1 ricade nella stessa categoria di suolo.



Il profilo di sottosuolo per quanto riguarda il parametro velocità delle onde di taglio (V_s) relativo a tale modello è riportato nella figura seguente.

MW06

l'esclusione del semispazio per il quale la variabilità del valore di velocità delle onde di taglio è molto forte.

Da quanto sopra il profilo della velocità delle onde di taglio è così riassumibile:

- > un primo sismostrato con velocità intorno a 110 m/s e base a profondità di circa 0,4 m dal p.c.
- un secondo sismostrato caratterizzato da velocità di 220 m/s e base posta a una profondità di 5,2 m dal p.c.
- un terzo sismostrato con base a 8,7 m da p.c. e velocità delle onde di taglio pari a 200 m/s
- un quarto sismostrato caratterizzato da una velocità delle onde di taglio di 375 m/s e base a 18,1 m dal p.c.
- un quinto sismostrato identificabile, dati i limiti e le risultanze della presente indagine, come semispazio omogeneo con valori di V_S di 980 m/s.

Osserviamo inoltre che pur non essendo un profilo geofisico regolare, data la presenza di uno strato d'inversione i contrasti d'impedenza tra i sismostrati rilevati non sono di entità particolarmente elevata, con l'esclusione del passaggio al semispazio rappresentante il bedrock sismico nel quale il contrasto d'impedenza sismica è molto forte.

3. ELABORAZIONE PROVE SISMICHE

L'elaborazione del dato tramite la tecnica di inversione ha permesso quindi di ricostruire un modello sismostratigrafico del terreno che mostra la presenza di n. 6 orizzonti di velocità:

- un layer superficiale con valori di velocità Vs pari a circa 197 m/s e spessore di circa 1.5 m;
- un secondo layer con valori di velocità Vs pari a circa 177 m/s e spessore di circa 2.5 m;
- un terzo layer con valori di velocità Vs pari a circa 210 m/s e spessore di circa 4.0 m;
- un quarto layer con valori di velocità Vs pari a circa 256 m/s e spessore di circa 5.0 m;
- un quinto layer con valori di velocità Vs pari a circa 363 m/s e spessore di circa 6.1 m;
- un sesto layer con valori di velocità Vs pari a circa 386 m/s.

Dai dati sopra esposti si può quindi constatare un graduale aumento di velocità delle onde S con la profondità, fatta eccezione per una lieve inversione di velocità tra i primi due layer. In base alle conoscenze geologiche dell'area ed alle informazioni bibliografiche reperite, le velocità ricavate possono essere ricondotte per il primo orizzonte a sabbie ghiaiose mediamente addensato, per il secondo e terzo layer ad un limo sabbioso argilloso poco addensato, per il quarto livello a sabbie ghiaiose mediamente addensate mentre per gli ultimi orizzonti ad un terreno granulare molto addensato.

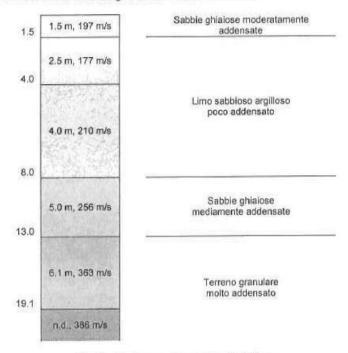
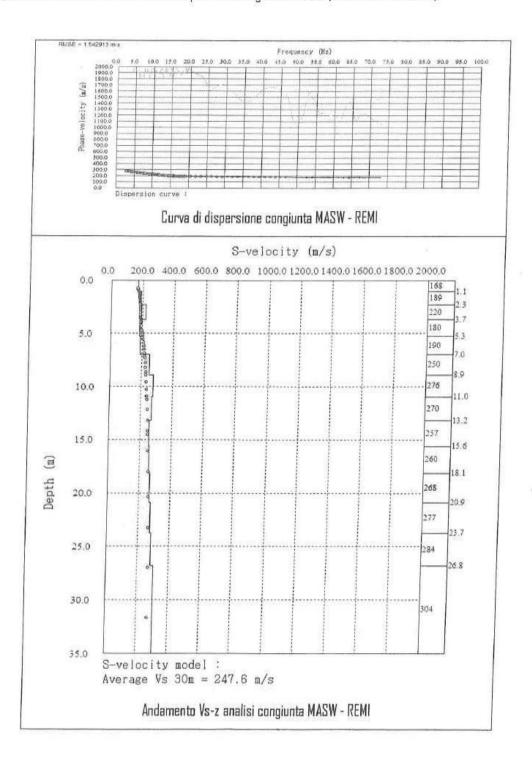



Fig. 3 - Colonna sismo-stratigrafica

Ulteriori dettagli dei dati acquisiti sono esposti negli elaborati grafici delle tavole.

Analisi congiunta MASW- REMI

Curva di dispersione congiunta (unione e smooting) MASW-REMI e relativo modello sismostratigrafico Vs-z Si fa presente che per la l'analisi congiunta lo scrivente ha ritenuto opportuno prendere a riferimento la curva di dispersione dell'analisi MASW relativa al punto di energizzazione s3 (vedi elaborato MASW).

MW09

PROSPEZIONI GEOFISICHE – INDAGINI VIBRAZIONALI STUDIO TECNICO M. ARCALENI

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

CALCOLO DEL PARAMETRO Vs30

Velocità di propagazione delle Onde di taglio

hi=(m)	Vsi=(m/s)	hi/vs	$V_{S30} = \frac{30}{-h}$	- =	751,7446	m/s
		200.300	37		17.11	
1,875	278	0,006745	1=1,N V			
1,875	311	0,006029				
1,875	386	0,004858				
1,875	575	0,003261				
1,875	801	0,002341				
1,875	911	0,002058				
1,875	1135	0,001652				
1,875	1291	0,001452				
1,875	1303	0,001439				
1,875	1303	0,001439				
1,875	1303	0,001439				
1,875	1303	0,001439				
1,875	1303	0,001439				
1,875	1303	0,001439				
1,875	1303	0,001439				
1,875	1303	0,001439				
30		0,039907				

Il calcolo del parametro Vs₃₀ è stato effettuato con le modalità prescritte dalle N.T.C. 14/01/2008 (riferito al p.c.), integrando i dati di sismica a rifrazione con quelli masw. Il valore di Vs₃₀ calcolato risulta dell'ordine dei 750 m/s circa. Si nota un importante contrasto di rigidità superficiale (quindi entro i primi 20 m di profondità). Le velocità delle onde S aumentano verso il basso e non si notano inversioni di velocità. Se si prende in considerazione il piano di campagna (p.c.), i depositi risultano associabili ad un suolo di categoria E.

sede operativa: Via XX Settembre, 16 - 52037 Sansepolcro (AR) Tel e fax: 0758556789 - 0575734659 email: geuro@technet.it

Popular processor of Control of Control of Processor of Control of Processor of Control		nta C di Rossi & C.	Profondtă reggiunta 5,80 m de p.c.	Quota Ass. P.C. 294 m s.l.m.	1		Pagina 1
Description Listaligia Description College of reportso Solder first color noccola, mediametra addensate: 5.40 Control of class in matrice time-soldinose 1.00 Solder first color noccola con bases stato di addensamento Solder first color noccola con stato di addensamento Control o classi in matrice time-soldinose 2.40 Control o classi in matrice time-soldinose 3.00 Solder first color noccola con bases stato di addensamento 3.00 Listalia o classi in matrice time-soldinose 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Listalia o classi in matrice time-soldinose 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00 Solder time color cavena, con bases stato di addensamento 3.00							Indio/Fine Esecutions 25/02/2013
Description Cotto di riporto Saldate fini color noccosa, mediamente addemsale Cicto di riporto Cicto di riporto Saldate fini color noccosa, mediamente addemsale 1.00 Saldate fini color noccosa prediamente addemsale 1.00 Saldate fini color noccosa con basso dato di addemsamento. 2.00 Saldate fini color noccosa con basso dato di addemsamento molto besso 2.00 Saldate fini color noccosa, con basso dato di addemsamento molto besso 2.00 Litti si addemsamento di add	Responses Dott, Fed	ble derico Del Gaia	Sondaggio S1	Tipo Sonda PENET, DJN.: tipo DPSH (S.He	Coordinate KY		
Solble fini color noccola, mediamente addensate Cicitali e clasti in matrice limo-sabbiosa Limi sabbie fini color noccola con basso stato di addensamento Solble fini color noccola con stato di addensamento molto besso Cicitali e clasti in metrice limo-sabbiose 2.00. Solble limose color evens, con basso stato di addensamento 3.00. Limi sabbiosi color noccola, consistenti il	(III	1				Quota	Fokia
Sabble fini color nocciola con stato di addensamento molto basso 2.00. Sabble fini color nocciola con stato di addensamento molto basso 2.40. Sabble fini color nocciola con stato di addensamento molto basso 3.40. Sabble limose color avena, con basso stato di addensamento 3.00. Unil sabblosi color nocciola, consistenti			Sabble fini color noccidia, mediamente adden	sate			
Cottoli e clasti in metrice limo-sabbiorsa 3.40 Sabbie limose color avane, con basso stato di addengamento 3.00 Umil sabbiosi color nocciola, consistenti							
Limi sabbiosi color nocciola, consistenti			Cictor e cleati in metrice limo-sabbiosa				
Umi sabbiosi color nocciola, consistenti			Sabble limose color avana, con basso stato di	addensamento		330	
			Umi sabbiosi color nocciola, consistenti	***************************************			

G e o i n Sondaggi geognostici Corso Cavour N°2 - Tel.075/8521100 06012 - Città di Castello (Pg) -

CAMPIONAMENTO STRATIGRAFICO N° 1

Committente		Corneli Luigi & C.	Cat.:F° 25	4 part. 268
Comune	:	Città di Castello	Clercy Committee	11/11/96
Località	:	Morra	Quota : Prof.Test:	290 m.s.l.m. 6.7 m.

Prof. p.c.(m)	stratigrafia campioni	descrizione litologica	livello acqua
0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 1.0 - 1.2 - 1.4 -	0.8	Coltre agraria sabbiosa local- mente sostituita da coltre di riporto. -Sabbie da medie a medio fini di colore giallastro sciolte passanti sabbie fini sature.	NO OUT THE WEST ONLY THE
2.0246802	2.4	- Sabbie abbondantemente limose sature di colore grigio e ava- -na.	000 000 000 000 000 000 100 000 000 100 000 000 100 000 000 100 000 000
3.4 3.6 4.0 -		sabbie medio fini quarzose di colore giallastro.	100 mm
4.2 - 4.4 - 4.6 - 4.8 -	4.3	Sabbie abbondantemente limose	NOTE THAT STATE AND SAME STATE AND SAME SAME
5.0 - 5.2 - 5.4 - 5.6 - 6.0 - 6.2 - 6.4 -	5.2	Limi e limi sabbiosi con passa te di sabbie mediamente adden- sate.	

Note: Presenza di acque di circolazione al di sotto di 1,2 m dal p.c. attuale.

STUDIO GEOTECNICO GEURO C.so Cayour, 2 - 06012 C. di Castello (Pg) - Via XX Settembre, 16 - 52037 - Sansepolcro(Ar P.IVA: 02294590548 - Tel.: 075/8556789 - 0575/734659 SONDAGGIO COMMITTENTE: BERNARDINI ANTONIO STRATIGRAFICO: \$1 LOCALITA': Cinquemiglia COMUNE: C. di Castello QUOTA: 285 m. s.l.m. PROFONDITA': 8.8 m da p.c.. NOTE: Presenza di fluidi di circolazione sotterranea a partire da 6.2 m DATA: 01/07/08 da p.c. LITOLOGIA STRATIGR CAM QUOTA FLUIDI PION AFIA da p.c.(m) 0.0 0.0 coltre eluviale sabbiosa e sabbio limosa sciolta 0.2 0.4 0.6 0.8 0.8 1.0_ sabbie moderatamente limose, color avana, poco 1.2 addensate in w 1.4 1.6 1.6 1.8 2.0 2.2 2.4 sabble da poco limose a limose, color avana- marrone 2.6 poco addensate 2.8 3.0 3.2 3.4 3.4 3.6 sabbie poco limose con livelli ciottolosi, med. addensate 3.8 3.8 4.0 4.2 4.4 ciottoli e ghiaie in matrice sabbio-limosa 4.6_ 4.8 5.0 5.0 5.2 sabbie poco limose con livelli ciottolosi, med. addensate 5.4 5.4 5.6 5.8 ciattali e ghiaie in matrice sabbio-limosa 6.0 6.0 6.2 6.2 6.4 6.6 sabbie poco limose con elementi clastici aventi dimensioni 6.8 7.0 centimetriche, med. addensate 7.2 7.4 7.6 7.8 8.0 8.2 8.2 ciottoli e ghiaie in matrice sabbio-limosa 8.4 8.6

8.8

STUDIO GEOTECNICO GEURO

C.so Cavour, 2 - 06012 C. di Castello (Pg) - Via XX Settembre, 16 - 52037 — Sansepolcro(Ar P.IVA: 02294590548 - Tel.: 075/8556789 - 0575/734659

COMMITTENTE: BERNA	SONDAGGIO	
COMUNE: C. di Castello	LOCALITA': Cinquemiglia	STRATIGRAFICO: S2
QUOTA: 285 m. s.l.m.	PROFONDITA': 8.8 m da p.c	
DATA: 01/07/08	NOTE: Presenzo di fluidi di circolazio	one sotterranea a partire da 6.0 m

		do p.c.			
	OTA	LITOLOGIA	STRATIGR	CAM	96
do p.	c, (m)		AFIA	PIONI	FLUIDI
0.0_	0.0_	For the tree of the terror of the	(0.4 J.O.E)		
0.2_		coltre eluviale sabbiosa e sabbio limosa sciolta	4,741		
0.4_					
0.6_					
0,8_			1		
1.0_			100,100,100		
,2_	1.2_	- HANNEY AND A CANADA STATE OF THE STATE OF	6 No No No S		
.4_	Xevres	sabble moderatamente limose, color avana, poco	(1-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
6_	1.6_	addensate			
8_		727 40 10 20 16	2.2.2.2		
0_		sabbie da poco limose a limose, color avana- marrone,	1.00.00.00.3		
2_		poco addensate			
4_	-				
6_	2.6_		10.000		
.8_		NAMES AND ADDRESS OF THE PARTY	2.5.70		
0_		sabbie poco limose con livelli ciottolosi .med. addensate	0.101010 120440000		
2_			15.11.37		
4_			970 97		
6_	Our Real		No.		
8_	3.8_		A CONTRACT		
0_			39639		
2_		NAME OF THE PARTY	CHICK CHICK		
4_		ciottoli e ghiaie in matrice sabbio-limosa	Co Co C		
6_			30.30		
8_			25/2016/		
0_	5.0_		78 47 5 75 6 76		
2_		sabbie poco limose con livelli ciottolosi, med. addensate	S. A. C.		
4_	5/10-WW		Congressions		
6_	5.6_		2000		
8_		ciottoli e ghiaie in matrice sabbio-limosa	0.000000	10	
0_	9	19	14.874.5		6.0_
2_	6.2_		200		
4_					
6_		Triby and the second	46. 46. 46.		
.8_		sabbie poco limose, colar avana-marrone, med.	12001		
.0_		addensate	1 10 10 10		
2_					
4_	7.4_		A 34 34 34 34 34 34 34 34 34 34 34 34 34		
6_			P. 10 20 20 20 20 20 20 20 20 20 20 20 20 20		
.8_		ciottali e ghiaie in matrice sabbio-limosa	8.75		
.0_	OWNER	(第2)	139339		
1.2	8.2		See See See See		

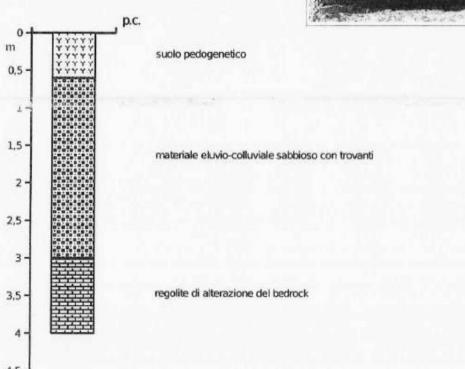
7. STRATIGRAFIA

Committente	Italo Norgiolini	loc.	San Leo Bastia
progetto	piscina privata	comune	Città di Castello
quota planoaltimetrica	310m s I.m	falda	20 m

profondità	spessori	litologia
(m)	(m)	
-0,60	0,60	suolo pedogenetico
-3,0	2,4	materiale eluvio-colluviale sabbioso con trovanti
-4,0	1,0	regolite di alterazione del bedrock

foto dello scavo

stratigrafia



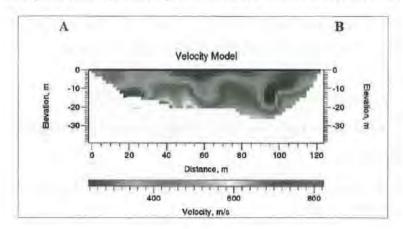
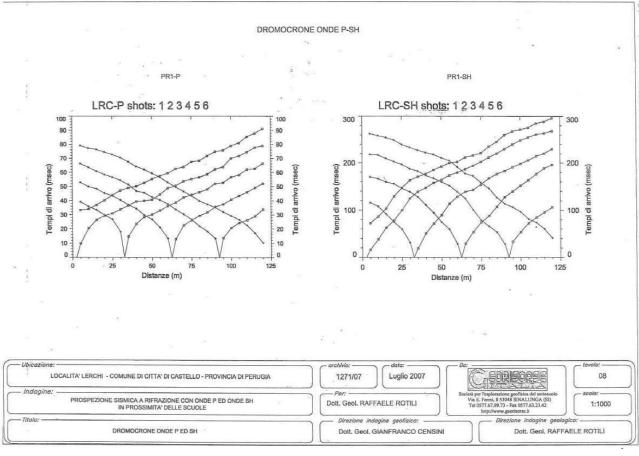
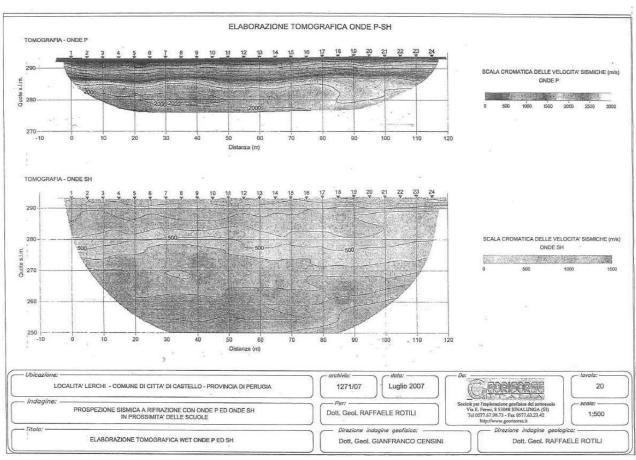


Foto n. 1 - Le fondazioni del fabbricato oggetto di ampliamento sono poste direttamente a contatto con compagine rocciosa inalterata.

Foto n. 2 – Affioramenti circostanti la superficie di progetto


Di seguito viene riportato il profilo sismico a rifrazione con onde SH:



Il valore del parametro Vs30 riportato nella Figura n. 1 risulta pari a 352,06 m/s, a cui si associa un sottosuolo di "CATEGORIA C".

Figura 1: Calcolo del parametro Vs30

INDAGINI DATABASE REGIONE

The Common Commo			INDACINI DATABASE DECIDAS HARDIA
## 15 (SOBLAGGIO http://doi.org/art.internos.repriou.cumbra.in/art.//negrotionologin/stro//Doursell.internos.pspico.cumbra.internos.pspico.cumbra.internos.pspico.cumbra.internos.pspico.cumbra.internos.pspico.cumbra.internos.pspico.cumbra.internos.pspico.cumbra.internos.pspico.cumbra.internos.pspico.cumbra.internos.pspico.cumbra.internos.pspi	Sigla	Tinologia	INDAGINI DATABASE REGIONE UMBRIA
1911 (SDBAGGG) Hell/Trockscall territoric region united high inflored period by Company of the C			
The Common Control of the Control of	355	SONDAGGIO	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC0519.pdf
The SPRINGERS STATE OF THE PLANT CONTROL OF THE PLA			
The SORAGGO New York Control Strate (Control Strate) and the Control Strate (
979 SDRAKEGO 1827/SDRAKEGO 1827/SD			
398 SOMO-GOOD 100 http://stroitexails internition regione unition in Judician/Consumential indepution/Coccosts gelf 415 COMUNA-GOOD 100 http://stroitexails internition regione unition in Judician/Coccosts and indepution/Coccosts gelf 415 COMUNA-GOOD 100 http://stroitexails internition regione unition in Judician/Coccosts in indepution/Coccosts gelf 415 COMUNA-GOOD 100 http://stroitexails internition regione unition in Judician/Coccosts in indepution/Coccosts gelf 415 COMUNA-GOOD 100 http://stroitexails internition regione unition in Judician/Coccosts gelf gelf gelf gelf gelf gelf gelf gelf			
445 SOMAGGO http://www.com.com/com.com/com/com/com/com/com/com/com/com/com/			
415 SDMAGGO MED/Harcotzall territor region unitral (PSDATIO Alegin George Lehran (Document) indepen (PDOGRES off Hard) SDMAGGO MED/Harcotzall territor region unitral (PSDATIO Alegin George Lehran (Document) indepen (PDOGRES off Hard) SDMAGGO MED/Harcotzall territor region unitral (PSDATIO Alegin George Lehran (Document) indepen (PDOGRES off Hard) SDMAGGO MED/Harcotzall territor region unitral (PSDATIO Alegin George Lehran (Document) indepen (PDOGRES of Hard) SDMAGGO MED/Harcotzall territor region unitral (PSDATIO Alegin George Lehran (Document) indepen (PDOGRES of Hard) SDMAGGO MED/Harcotzall territor region unitral (PSDATIO Alegin George Lehran (Document) indepen (PDOGRES of Hard) SDMAGGO MED/Harcotzall territor region unitral (PSDATIO Alegin George Lehran (PSDATIO Alegin Harcotza) (PSDATIO Alegin George Lehran (PSDATIO Alegin			
400 SDRA-6500 http://strocizzat.territion.orgone.uminar.jb/Starlo/mageniceologichen/microscome.in/spagin/DOC039.pdf 420 SDRA-6500 http://strocizzat.territion.orgone.uminar.jb/Starlo/mageniceologichen/microscome.in/spagin/DOC039.pdf 421 SDRA-6500 http://strocizzat.territion.orgone.uminar.jb/Starlo/mageniceologichen/microscome.in/spagin/DOC039.pdf 422 SDRA-6500 http://strocizzat.territion.orgone.uminar.jb/Starlo/mageniceologichen/microscome.in/spagin/DOC039.pdf 423 SDRA-6500 http://strocizzat.territion.orgone.uminar.jb/Starlo/mageniceologichen/microscome.in/spagin/DOC039.pdf 424 SDRA-6500 http://strocizzat.territion.orgone.uminar.jb/Starlo/mageniceologichen/microscome.in/spagin/DOC039.pdf 425 SDRA-6500 http://strocizzat.territion.orgone.uminar.jb/Starlo/mageniceologichen/microscome.in/spagin/DOC039.pdf 426 SDRA-6500 http://strocizzat.territion.orgone.uminar.jb/Starlo/mageniceologichen/microscome.in/spagin/DOC039.pdf 427 SDRA-6500 http://strocizzat.territion.orgone.uminar.jb/Starlo/mageniceologichen/microscome.in/spagin/DOC039.pdf 428 SDRA-6500 http://strocizzat.territion.orgone.uminar.jb/Starlo/magenice			
448 SDNASGIO http://doi.org.ni.com/com/com/com/com/com/com/com/com/com/			
438 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG064.pdf 438 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG074.pdf 439 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG074.pdf 449 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG074.pdf 440 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG0724.pdf 440 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG724.pdf 440 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG724.pdf 441 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG724.pdf 443 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG724.pdf 444 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG724.pdf 445 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG724.pdf 446 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG724.pdf 447 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG724.pdf 448 SDNAXGGIO http://docisrast.termion.regione.umbra.fl/Staft/IndaginGoolgechenry/Document_Indagin/DOCG724.pdf 449 SDNAXGGIO http://docisrast.termion.regione.			
4-83 SDNA-SGIO http://docinatest.territorio.orgione.umbra.ft/Staffc/indignisGooglechem/Document Indignin/DOCOPA pdf 4-93 SDNA-SGIO http://docinatest.territorio.orgione.umbra.ft/Staffc/indignisGooglechem/Document Indignin/DOCOPA pdf 4-95 SDNA-SGIO http://docinatest.territorio.orgione.umbra.ft/Staffc/indign			http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC0636.pdf
4:49 SDNAX-SGIO http://document.internotion.regione.umbra.it/Static/indaginsGeologichening/Document.indagin/DOC072.pdf 4:49 SDNAX-SGIO http://document.internotion.regione.umbra.it/Static/indaginsGeologichening/Document.indagin/DOC072.pdf 4:60 SDNAX-SGIO http://document.internotion.regione.umbra.it/Static/indaginsGeologichening/Document.indagin/DOC0724.pdf 4:62 SDNAX-SGIO http://document.internotion.regione.umbra.it/Static/indaginsGeologichening/Document.indagin/DOC0724.pdf 4:63 SDNAX-SGIO http://document.internotion.regione.umbra.it/Static/indaginsGeologichening/Document.indagin/DOC0724.pdf 4:64 SDNAX-SGIO http://document.internotion.regione.umbra.it/Static/indaginsGeologichening/Document.internotion.pdg/do			
469 SONDAGGIG http://doi.org/ani.territion-regione.umbra.it/Static/indeginGeologicheten/20ccument_indegini/OCC772.pdf 460 SONDAGGIG http://doi.org/ani.territion-regione.umbra.it/Static/indeginiGeologicheten/20ccument_indegini/OCC772.pdf 462 SONDAGGIG http://doi.org/ani.territion-regione.umbra.it/Static/indeginiGeologicheten/20ccument_indegini/OCC772.pdf 462 SONDAGGIG http://doi.org/ani.territion-regione.umbra.it/Static/indeginiGeologicheten/20ccument_indegini/OCC772.pdf 463 SONDAGGIG http://doi.org/ani.territion-regione.umbra.it/Static/indeginiGeologicheten/20ccument_indegini/OCC772.pdf 464 SONDAGGIG http://doi.org/ani.territion-regione.umbra.it/Static/indeginiGeologicheten/20ccument_indegini/OCC772.pdf 465 SONDAGGIG http://doi.org/ani.territion-regione.umbra.it/Static/indeginiGeologicheten/20ccument_indegini/OCC782.pdf 466 SONDAGGIG http://doi.org/ani.territion-regione.umbra.it/Static/indeginiGeologicheten/20ccument_indegini/OCC880.pdf 467 SONDAGGIG http://doi.org/ani.territion-regione.umbra.it/Static/indeginiGeologicheten/20ccument_indegini/OCC880.pdf 468 SONDAGGIG http://doi.org/ani.territion-regione.umbra.it/Static/indeginiGeologicheten/20ccument_indegini/OCC880.pdf 468 SONDAGGIG http://doi.org/ani.territion-regione.umbra.it/Static/indeginiGeologicheten/20ccument_indegini/OCC880.pdf 468 SONDAGGIG http://doi			
460 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC0724.pdf 462 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC0726.pdf 462 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC0726.pdf 463 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC07272.pdf 463 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC07272.pdf 464 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC07272.pdf 464 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC07272.pdf 464 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC07272.pdf 465 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC07272.pdf 465 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC0722.pdf 466 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC0722.pdf 467 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC0722.pdf 468 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC0722.pdf 468 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC0722.pdf 469 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC0722.pdf 469 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC0722.pdf 469 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy/Document.indegin/GOC0722.pdf 469 SONDAGGIO http://storicizatal.termion-regione.umbrain/Static/indegin/Geolgochekmy			
462 SONDAGGIO http://storicizast.termton.regione.umbra.tl/Static/indegniGeologichekmy/Documents indegni/UDC0772.pdf 463 SONDAGGIO http://storicizast.termton.regione.umbra.tl/Static/indegniGeologichekmy/Documents indegni/UDC0772.pdf 463 SONDAGGIO http://storicizast.termton.regione.umbra.tl/Static/indegniGeologichekmy/Documents indegni/UDC0772.pdf 463 SONDAGGIO http://storicizast.termton.regione.umbra.tl/Static/indegniGeologichekmy/Documents indegni/UDC0772.pdf 464 SONDAGGIO http://storicizast.termton.regione.umbra.tl/Static/indegniGeologichekmy/Documents indegni/UDC0772.pdf 525 SONDAGGIO http://storicizast.termton.regione.umbra.tl/Static/indegniGeologichekmy/Documents indegni/UDC0772.pdf 527 SONDAGGIO http://storicizast.termton.regione.umbra.tl/Static/indegniGeologichekmy/Documents indegni/UDC0779.pdf 528 SONDAGGIO http://storicizast.termton.regione.umbra.tl/Static/indegniGeologichekmy/Documents indegni/UDC0779.pdf 529 SONDAGGIO http://storicizast.termton.regione.umbra.tl/Static/indegniGe			
462 SONDAGGIO http://storicizatal.termtion-regione umbrain.fl/Startic/Indegin/Geolgichekmy/Document_Indepin/DOC0727.pdf 463 SONDAGGIO http://storicizatal.termtion-regione umbrain.fl/Startic/Indegin/Geolgichekmy/Document_Indepin/DOC0727.pdf 464 SONDAGGIO http://storicizatal.termtion-regione umbrain.fl/Startic/Indegin/Geolgichekmy/Document_Indepin/DOC0728.pdf 465 SONDAGGIO http://storicizatal.termtion-regione umbrain.fl/Startic/Indegin/Geolgichekmy/Document_Indepin/DOC0728.pdf 465 SONDAGGIO http://storicizatal.termtion-regione umbrain.fl/Startic/Indegin/Geolgichekmy/Document_Indepin/DOC0729.pdf 525 SONDAGGIO http://storicizatal.termtion-regione umbrain.fl/Startic/Indegin/Geolgichekmy/Document_Indepin/DOC0729.pdf 525 SONDAGGIO http://storicizatal.termtion-regione umbrain.fl/Startic/Indegin/Geolgichekmy/Document_Indepin/DOC0729.pdf 526 SONDAGGIO http://storicizatal.termtion-regione umbrain.fl/Startic/Indegin/Geolgichekmy/Document_Indepin/DOC0729.pdf 527 SONDAGGIO http://storicizatal.termtion-regione.umbrain.fl/Startic/Indegin/Geolgichekmy/Document_Indepin/DOC0729.pdf 528 SONDAGGIO http://storicizatal.termtion-regione.umbrain.fl/Startic/Indegin/Geolgichekmy/Document_Indepin/DOC0729.pdf 628 SONDAGGIO http://storicizatal.termtion-regione.umbrain.fl/Startic/Indegin/Geolgichekmy/Document_Indepin/DOC0729.pdf 629 SO	460		
463 DNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC0727.pdf 464 SNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC0727.pdf 525 DNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC0722.pdf 525 DNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC0722.pdf 529 DNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC0729.pdf 530 SNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC0739.pdf 635 SNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC0800.pdf 635 SNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC0800.pdf 636 SNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC100.pdf 636 SNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC100.pdf 636 SNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC100.pdf 637 SNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC101.pdf 637 SNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC101.pdf 637 SNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC101.pdf 637 SNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC101.pdf 737 SNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC101.pdf 738 SNNAGGIO http://storiozzall.erritorio.regione.umbrail.r/Static/IndegmicRoologiche/min/Document indegmi/DOC101.pdf 738 SNNAGGIO http://storiozzall.			
463 SONDAGGIO http://storicuzalt.errinforo.regione.umbra.lt/Static/Indegnicelooglete/mrz/Document.indagni/DOC0722.pdf 463 SONDAGGIO http://storicuzalt.errinforo.regione.umbra.lt/Static/Indegnicelooglete/mrz/Document.indagni/DOC0722.pdf 4523 SONDAGGIO http://storicuzalt.errinforo.regione.umbra.lt/Static/Indegnicelooglete/mrz/Document.indagni/DOC0792.pdf 4523 SONDAGGIO http://storicuzalt.errinforo.regione.umbra.lt/Static/Indegnicelooglete/mrz/Document.indagni/DOC0792.pdf 4523 SONDAGGIO http://storicuzalt.errinforo.regione.umbra.lt/Static/Indegnicelooglete/mrz/Document.indagni/DOC0792.pdf 4533 SONDAGGIO http://storicuzalt.errinforo.regione.umbra.lt/Static/Indegnicelooglete/mrz/Document.indagni/DOC0800.pdf 4533 SONDAGGIO http://storicuzalt.errinforo.regione.umbra.lt/Static/Indegnicelooglete/mrz/Document.indagni/DOC0800.pdf 4583 SONDAGGIO http://storicuzalt.errinforo.regione.umbra.lt/Static/Indegnicelooglete/mrz/Document.indagni/DOC01019.pdf 4583 SONDAGGIO http://storicuzalt.errinforo.regione.umbra.lt/Static/Indegnicelooglete/mrz/Document.indagni/DOC01019.pdf 4593 SONDAGGIO http://storicuzalt.errinforo.regione.umbra.lt/Static/Indegnicelooglete/mrz/Document.indagni/DOC1020.pdf 4593 SONDAGGIO http://s			
46 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC0722.pdf 522 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC0732.pdf 523 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC0739.pdf 535 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC0739.pdf 535 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC0804.pdf 635 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC0804.pdf 635 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC1008.pdf 635 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC1008.pdf 635 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC1009.pdf 645 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC1009.pdf 645 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC1009.pdf 645 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC1003.pdf 645 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC1003.pdf 645 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC1003.pdf 645 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC1003.pdf 740 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/start/20current indagni/DOC1003.pdf 740 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/star/20current indagni/DOC1003.pdf 740 SDNAAGGIO http://storiozzati.ermton.orgone.umbrail/Static/Indagniceloogide/star/20current			
S22 SONDAGGIO http://storiczati.territorio.regione.umbria.it/Static/indagnicGeologichekmr/Document indagni/DOC0792.pdf	464	SONDAGGIO	
S20 SONDAGGIO http://storiczat.territorio.regione.umbria.it/Static/indagniceologichekmn/Documenti_indagni/DOC0399.pdf			
SAD SONDAGGIO http://storiczzat.territorio.regione.umbria.it/Static/Indagnicologichekm/Document indagni/DOC0080.pdf 683 SONDAGGIO http://storiczzat.territorio.regione.umbria.it/Static/Indagnicologichekm/Document indagni/DOC0080.pdf 685 SONDAGGIO http://storiczzat.territorio.regione.umbria.it/Static/Indagnicologichekm/Document indagni/DOC0189.pdf 685 SONDAGGIO http://storiczzat.territorio.regione.umbria.it/Static/Indagnicologichekm/Document indagni/DOC0189.pdf 689 SONDAGGIO http://storiczzat.territorio.regione.umbria.it/Static/Indagnicologichekm/Document indagni/DOC0189.pdf 689 SONDAGGIO http://storiczzat.territorio.regione.umbria.it/Static/Indagnicologichekm/Document indagni/DOC0109.pdf 689 SONDAGGIO http://storiczzat.territorio.regione.umbria.it/Static/Indagnicologichekm/Document indagni/DOC1021.pdf 689 SONDAGGIO http://storiczzat.territorio.regione.umbria.it/Static/Indagnicologichekm/Document indagni/DOC1022.pdf 689 SONDAGGIO http://storiczzat.territorio.regione.umbria.it/Static/Indagnicologichekm/Document indagni/DOC1023.pdf 689 SONDAGGIO http://storiczzat.territorio.regione.umbria.it/Static/Indagnicologichekm/Document indagni/DOC1023.pdf 780 SONDAGGIO http://storiczzat.territorio.regione.umbria.it/Static/Indagnicologichekm/Document indagni/DOC1033.pdf 880 SONDAGGIO http://storiczzat.territorio.regione.umbria.it/Static/Indagnicologichekm/Document indagni/DOC1033.pdf 880 SONDAGGIO http://storiczzat.territorio.regione.umbria.it/Static/Indagnicologichekm/Document indagni/DOC1033.pdf 881 SONDAGGIO http://storiczzat.territo			
534 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/indaginiGeologichetinz/Documenti.indagini/DOC1094.pdf 688 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/indaginiGeologichetinz/Documenti.indagini/DOC1018.pdf 689 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/indaginiGeologichetinz/Documenti.indagini/DOC1018.pdf 689 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/indaginiGeologichetinz/Documenti.indagini/DOC1019.pdf 691 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/IndaginiGeologichetinz/Documenti.indagini/DOC1029.pdf 693 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/IndaginiGeologichetinz/Documenti.indagini/DOC1029.pdf 693 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/IndaginiGeologichetinz/Documenti.indagini/DOC1029.pdf 695 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/IndaginiGeologichetinz/Documenti.indagini/DOC1029.pdf 696 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/IndaginiGeologichetinz/Documenti.indagini/DOC1029.pdf 697 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/IndaginiGeologichetinz/Documenti.indagini/DOC1029.pdf 698 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/IndaginiGeologichetinz/Documenti.indagini/DOC1039.pdf 699 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/IndaginiGeologichetinz/Documenti.indagini/DOC1039.pdf 690 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/IndaginiGeologichetinz/Documenti.indagini/DOC1039.pdf 691 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/IndaginiGeologichetinz/Documenti.indagini/DOC1039.pdf 692 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/IndaginiGeologichetinz/Documenti.indagini/DOC1039.pdf 693 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/IndaginiGeologichetinz/Documenti.indagini/DOC1039.pdf 694 SDNDAGGIO http://storicizat.iterritorio.regione.umbrai.it/Static/IndaginiG			
689 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1019.pdf 690 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1019.pdf 691 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1021.pdf 693 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1021.pdf 693 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1023.pdf 694 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1023.pdf 700 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1033.pdf 701 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1033.pdf 702 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1033.pdf 703 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1033.pdf 703 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1033.pdf 707 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1033.pdf 805 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1039.pdf 805 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1035.pdf 816 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1035.pdf 827 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1035.pdf 828 SONDAGGIO http://storicizati.territorio.regione.umbrai.t/Static/nalgniGeologichekm//Documenti.indagni/DOC1035.pdf 828 SONDAGGIO http://storicizati.territo			
689 SDNDAGGIG http://storicizzati.territorio.regione.umbria.it/Static/indagniGeologichekm//Decumenti.indagni/OCC103p.df 691 SDNDAGGIG http://storicizzati.territorio.regione.umbria.it/Static/indagniGeologichekm//Decumenti.indagni/OCC103p.df 693 SDNDAGGIG http://storicizzati.territorio.regione.umbria.it/Static/indagniGeologichekm//Decumenti.indagni/OCC103p.df 693 SDNDAGGIG http://storicizzati.territorio.regione.umbria.it/Static/indagniGeologichekm//Decumenti.indagni/OCC102p.df 693 SDNDAGGIG http://storicizzati.territorio.regione.umbria.it/Static/indagniGeologichekm//Decumenti.indagni/OCC102p.df 698 SDNDAGGIG http://storicizzati.territorio.regione.umbria.it/Static/indagniGeologichekm//Decumenti.indagni/OCC103p.df 700 SDNDAGGIG http://storicizzati.territorio.regione.umbria.it/Static/indagniGeologichekm//Decumenti.indagni/OCC103p.df 701 SDNDAGGIG http://storicizzati.territorio.regione.umbria.it/Static/indagniGeologichekm//Decumenti.indagni/OCC103p.df 702 SDNDAGGIG http://storicizzati.territorio.regione.umbria.it/Static/indagniGeologichekm//Decumenti.indagni/OCC103p.df 703 SDNDAGGIG http://storicizzati.territorio.regione.umbria.it/Static/indagniGeologichekm//Decumenti.indagni/OCC103p.df 805 SDNDAGGIG http://storicizzati.territorio.regione.umbria.it/Static/indagniGeologichekm//Decumenti.indagni/OCC103p.df 808 SD			
690 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1020.pdf 693 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1024.pdf 693 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1028.pdf 693 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1028.pdf 694 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1029.pdf 795 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1029.pdf 796 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1029.pdf 797 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1039.pdf 798 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1039.pdf 895 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1039.pdf 895 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1039.pdf 896 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1039.pdf 897 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1039.pdf 898 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1039.pdf 899 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1039.pdf 890 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/DOC1039.pdf 891 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndaginiGeologichekmi/Documenti.indagin/D			
691 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1021.pdf 693 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1028.pdf 693 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1028.pdf 693 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1029.pdf 790 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1039.pdf 791 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1039.pdf 793 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1039.pdf 793 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1039.pdf 895 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1039.pdf 898 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1049.pdf 898 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1049.pdf 898 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1049.pdf 898 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1059.pdf 898 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1059.pdf 899 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1059.pdf 891 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1069.pdf 892 SONDAGGIO http://storicizzat.territorio.regione.umbria.it/Static/IndagniGeologichekmr/Documenti_indagni/DOC1069.pdf 893 SO			
697 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/ndaginiGeologichekm/Documenti indagini/DOC1029.pdf 700 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagini/DOC1029.pdf 701 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagini/DOC1032.pdf 702 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagini/DOC1033.pdf 703 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagini/DOC1033.pdf 707 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagini/DOC1039.pdf 805 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagini/DOC1039.pdf 805 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagini/DOC1035.pdf 816 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagini/DOC1035.pdf 816 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagini/DOC1035.pdf 817 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagini/DOC1035.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagini/DOC1035.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagini/DOC1036.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagin/DOC1036.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagin/DOC1036.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documenti indagin/DOC1036.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statit/indaginiGeologichekm/Documen			
Fig. SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Statitc/IndaginiGeologicheKmr/Documenti indagini/DOC1032.pdf	693	SONDAGGIO	$\label{prop:linear_loss} http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1024.pdf$
700 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1033.pdf 701 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1033.pdf 702 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1034.pdf 707 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1035.pdf 805 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1035.pdf 805 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1042.pdf 808 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1053.pdf 816 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1053.pdf 817 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1057.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1063.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1063.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1064.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1064.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1068.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1068.pdf 819 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1077.pdf 820 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/Indagini			
701 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1033.pdf 702 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1033.pdf 703 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1033.pdf 805 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1033.pdf 805 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1043.pdf 806 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1045.pdf 816 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1053.pdf 817 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1053.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1063.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1063.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1063.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1066.pdf 818 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1068.pdf 819 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1072.pdf 810 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1072.pdf 810 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1093.pdf 811 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/Indagini			
702 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1034.pdf 703 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1035.pdf 707 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1035.pdf 808 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1045.pdf 816 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1045.pdf 816 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1057.pdf 820 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1057.pdf 821 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1063.pdf 822 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1063.pdf 823 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1066.pdf 830 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1068.pdf 831 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1068.pdf 833 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1078.pdf 834 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1077.pdf 840 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1077.pdf 843 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologichekm:/Documenti_indagini/DoC1078.pdf 844 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indagini			
SONDAGGIO	702	SONDAGGIO	
805 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1042.pdf 816 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1053.pdf 820 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1053.pdf 825 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1063.pdf 825 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1063.pdf 825 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1063.pdf 826 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1066.pdf 830 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1068.pdf 831 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1068.pdf 832 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1072.pdf 833 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1072.pdf 840 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1078.pdf 841 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1078.pdf 842 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1078.pdf 843 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1089.pdf 844 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmr/Documenti_indagini/DOC1092.pdf 855 SONDAGGIO http://stonicizzati.territorio.regione.umbria.it/Static/Indagini			
808 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti_indagini/DOC1045.pdf 816 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti_indagini/DOC1053.pdf 820 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti_indagini/DOC1053.pdf 825 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti_indagini/DOC1063.pdf 825 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1063.pdf 828 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1066.pdf 830 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1068.pdf 831 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1068.pdf 832 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1072.pdf 833 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1077.pdf 840 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1077.pdf 841 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1078.pdf 843 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1078.pdf 843 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1089.pdf 854 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1089.pdf 855 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1092.pdf 856 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/Indagini			
816 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1053.pdf 820 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1063.pdf 825 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1063.pdf 826 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1063.pdf 827 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1066.pdf 828 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1068.pdf 830 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1068.pdf 831 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1072.pdf 832 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1072.pdf 833 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1072.pdf 834 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1088.pdf 835 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1088.pdf 836 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1088.pdf 837 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1088.pdf 838 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1092.pdf 838 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indaginiGeologicheKmz/Documenti indagini/DOC1092.pdf 838 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/indagini			
825 SONDAGGIO http://storicizzati.territorio.regione.umbria.it//static/IndaginiGeologicheKmz/Documenti_indagini/DOC1063.pdf 825 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1063.pdf 828 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1068.pdf 830 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1068.pdf 830 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1072.pdf 831 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1072.pdf 832 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1072.pdf 840 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1073.pdf 841 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1082.pdf 842 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1082.pdf 843 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1083.pdf 844 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1088.pdf 845 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1088.pdf 846 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1089.pdf 847 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1089.pdf 848 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 849 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/Indagin			
825 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1063.pdf 828 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1068.pdf 830 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1068.pdf 831 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1068.pdf 833 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1072.pdf 839 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1072.pdf 840 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1078.pdf 844 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1082.pdf 849 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1082.pdf 850 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1088.pdf 851 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1088.pdf 851 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1098.pdf 858 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1098.pdf 860 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1098.pdf 861 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 865 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/static/Indagini			
828 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1066.pdf 830 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1068.pdf 831 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1068.pdf 832 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1072.pdf 833 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1072.pdf 840 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1078.pdf 844 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1082.pdf 849 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1087.pdf 850 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1088.pdf 851 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1089.pdf 854 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1092.pdf 858 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1092.pdf 866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC102.pdf 866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1102.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1111.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1111.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiG			
830 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1068.pdf 830 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1072.pdf 839 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1077.pdf 840 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1077.pdf 840 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1082.pdf 844 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1082.pdf 849 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1082.pdf 850 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1088.pdf 851 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1089.pdf 853 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1092.pdf 858 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1092.pdf 858 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC11092.pdf 861 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 863 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 864 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 865 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf 866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/Indagin			
830 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1072.pdf 839 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1072.pdf 840 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1078.pdf 844 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1078.pdf 849 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1082.pdf 849 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1087.pdf 850 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1089.pdf 851 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1089.pdf 854 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1092.pdf 858 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1092.pdf 858 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1109.pdf 861 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 864 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1109.pdf 865 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1109.pdf 866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1119.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1119.pdf 878 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/Indagini			Live the state of
839 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1077.pdf 840 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1082.pdf 849 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1082.pdf 849 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1087.pdf 850 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1088.pdf 851 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1089.pdf 854 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1092.pdf 858 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1092.pdf 859 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1102.pdf 850 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 850 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 850 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1107.pdf 851 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1110.pdf 852 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf 853 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf 854 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf 855 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/Indagini			
840 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1078.pdf 843 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1082.pdf 849 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1088.pdf 850 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1088.pdf 851 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1089.pdf 853 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1098.pdf 854 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1098.pdf 856 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1098.pdf 861 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1102.pdf 864 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 865 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1101.pdf 866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 871 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf 872 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf 873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 881 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/Indagini			
844 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1082.pdf 849 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1087.pdf 850 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1088.pdf 851 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1088.pdf 854 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1092.pdf 858 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1098.pdf 860 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1102.pdf 861 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1102.pdf 863 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1107.pdf 864 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1107.pdf 865 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC11109.pdf 866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1112.pdf 873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1112.pdf 873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1112.pdf 873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 874 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/Indagin			
849 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1087.pdf 850 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1088.pdf 851 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1092.pdf 858 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1092.pdf 858 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1092.pdf 860 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1102.pdf 861 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1102.pdf 863 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1107.pdf 864 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1109.pdf 865 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf 878 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1121.pdf 878 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 888 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1133.pdf 889 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 899 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/Indagini			
851 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1089.pdf 854 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1092.pdf 858 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1102.pdf 860 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1102.pdf 861 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 863 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1107.pdf 865 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1109.pdf 866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 871 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1112.pdf 872 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1121.pdf 873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 874 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 875 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 876 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 877 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 878 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/Indagini	849	SONDAGGIO	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1087.pdf
854 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1092.pdf 858 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1098.pdf 860 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1102.pdf 861 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 864 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1107.pdf 865 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1109.pdf 866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf 871 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1119.pdf 872 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1121.pdf 873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 881 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1133.pdf 882 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 889 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 890 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 891 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1215.pdf 892 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKm			
858 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1098.pdf 860 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1102.pdf 861 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 862 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1107.pdf 863 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1109.pdf 864 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 865 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf 871 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1112.pdf 872 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1121.pdf 873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 881 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1133.pdf 882 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 890 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 1143 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1215.pdf 1221 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1216.pdf 1222 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/D			
860 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1102.pdf 861 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1103.pdf 864 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1107.pdf 865 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1109.pdf 866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf 871 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1119.pdf 872 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1121.pdf 873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 881 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1133.pdf 882 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 880 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 880 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 881 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 882 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 883 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 884 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/Indagini			
864 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1107.pdf 865 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1119.pdf 866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf 871 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1119.pdf 872 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1121.pdf 873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 881 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1133.pdf 882 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 880 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1143.pdf 881 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1143.pdf 882 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1143.pdf 883 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1143.pdf 884 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1143.pdf 885 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC11215.pdf 886 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC11215.pdf			
865 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1109.pdf 866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf 871 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1119.pdf 872 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1121.pdf 873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 881 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1133.pdf 882 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 889 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 1143 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1215.pdf 1221 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1216.pdf 1222 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1216.pdf			
866 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1111.pdf 867 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf 871 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1112.pdf 872 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1121.pdf 873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 881 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1133.pdf 882 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 890 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1143.pdf 1143 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1215.pdf 1221 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1216.pdf 1222 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1217.pdf			
871 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1119.pdf 872 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1121.pdf 873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 881 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1133.pdf 882 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 889 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1143.pdf 1143 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1215.pdf 1221 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1216.pdf 1222 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1217.pdf			
872 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1121.pdf 873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 881 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1133.pdf 882 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 889 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1143.pdf 1143 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1215.pdf 1221 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1216.pdf 1222 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1217.pdf	867	SONDAGGIO	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1113.pdf
873 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1123.pdf 881 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1133.pdf 882 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 890 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1143.pdf 1143 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1215.pdf 1221 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1216.pdf 1222 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1217.pdf			
881 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1133.pdf 882 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 890 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1143.pdf 1143 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1215.pdf 1221 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1216.pdf 1222 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1217.pdf			
882 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1134.pdf 890 SONDAGGIO http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1143.pdf 1143 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1215.pdf 1221 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1216.pdf 1222 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1217.pdf			
1143 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1215.pdf 1221 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1216.pdf 1222 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1217.pdf			
1221 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1216.pdf 1222 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1217.pdf			
1222 DPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1217.pdf			
1046 CF	1648		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1597.pdf
1649 CPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1598.pdf	1649	CPT	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1598.pdf
1650 CPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1599.pdf			
1671 CPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1655.pdf 1725 CPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2007.pdf			
1726 CPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2008.pdf			
1729 CPT http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2015.pdf	1729	CPT	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2015.pdf

_	T	
1730		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2016.pdf
1731		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2017.pdf
1732		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2018.pdf
1733	DPT	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2019.pdf
1734	DPT	$lem:http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2020.pdf$
1743	DPT	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2040.pdf
1744	DPT	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2041.pdf
1745	DPT	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2042.pdf
1746	DPT	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2043.pdf
1748	DPT	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2045.pdf
1749	DPT	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti indagini/DOC2046.pdf
1750	DPT	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2050.pdf
1751	СРТ	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti indagini/DOC2052.pdf
3782		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti indagini/DOC3883.pdf
3782		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti indagini/DOC3883.pdf
3784		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti indagini/DOC3887.pdf
7633		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti indagini/AvS1.pdf
7634		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti indagini/AvtS2.pdf
7636		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti indagini/AvtS5.pdf
7637		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti indagini/AvtS6.pdf
7646		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti indagini/Avt515.pdf
7653		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti indagini/AvtS29.pdf
7654		http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti indagini/Avt530.pdf
7654		
7654 Sigla	DH	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf
Sigla	DH Tipologia	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf Link_docum
Sigla 9024	DH Tipologia Profilo sismico a rifrazione	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf
Sigla 9024 9032	DH Tipologia Profilo sismico a rifrazione Profilo sismico a rifrazione	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf
9024 9032 9072	DH Tipologia Profilo sismico a rifrazione Profilo sismico a rifrazione Profilo sismico a rifrazione	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf
9024 9032 9072 9073	DH Tipologia Profilo sismico a rifrazione	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf
9024 9032 9072 9073 9074	DH Tipologia Profilo sismico a rifrazione	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf
9024 9032 9072 9073 9074 9075	DH Tipologia Profilo sismico a rifrazione	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf
9024 9032 9072 9073 9073 9074 9075	DH Tipologia Profilo sismico a rifrazione	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf
Sigla 9024 9032 9072 9073 9074 9075 9076 9076	DH Tipologia Profilo sismico a rifrazione	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf
Sigla 9024 9032 9072 9073 9074 9075 9076 9077 9078	DH Tipologia Profilo sismico a rifrazione	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf
Sigla 9024 9032 9072 9073 9074 9075 9076 9077 9078	DH Tipologia Profilo sismico a rifrazione	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC2036.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DoC2038.pdf
Sigla 9024 9032 9072 9073 9074 9075 9076 9077 9078 9079	DH Tipologia Profilo sismico a rifrazione	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2038.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2038.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2038.pdf
Sigla 9024 9032 9072 9073 9074 9075 9076 9077 9078 9079 9080 Sigla	DH Tipologia Profilo sismico a rifrazione	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC20128.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2036.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2038.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf
Sigla 9024 9032 9072 9073 9074 9075 9076 9077 9078 9079 9080 Sigla 9436	DH Tipologia Profilo sismico a rifrazione Tipologia MASW	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2038.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2038.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_01.PDF
Sigla 9024 9032 9072 9073 9074 9075 9076 9077 9078 9079 9080 Sigla 9436	DH Tipologia Profilo sismico a rifrazione Tipologia MASW MASW	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2038.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2038.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_01.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_02.PDF
Sigla 9024 9032 9072 9073 9074 9075 9076 9077 9078 9079 9080 Sigla 9436 9437	DH Tipologia Profilo sismico a rifrazione Trofilo sismico a rifrazione Profilo sismico a rifrazione Tipologia MASW MASW	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2036.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2038.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_01.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_03.PDF
Sigla 9024 9032 9072 9073 9074 9075 9076 9077 9078 9079 9080 Sigla 9436 9437	DH Tipologia Profilo sismico a rifrazione Tipologia MASW MASW MASW MASW	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2038.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf Link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_01.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_02.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_04.PDF
Sigla 9024 9032 9072 9073 9074 9075 9076 9077 9078 9080 Sigla 9436 9437 9438	DH Tipologia Profilo sismico a rifrazione Trofilo sismico a rifrazione Profilo sismico a rifrazione Tipologia MASW MASW MASW MASW MASW	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_01.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_02.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_03.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_04.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_05.PDF
Sigla 9024 9032 9072 9073 9074 9075 9076 9077 9078 9079 9080 Sigla 9436 9437 9438	DH Tipologia Profilo sismico a rifrazione Trofilo sismico a rifrazione Profilo sismico a rifrazione MASW MASW MASW MASW MASW MASW MASW	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC20128.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2036.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2038.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_01.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_02.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_03.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_03.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_03.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_05.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/T
Sigla 9024 9032 9072 9073 9074 9075 9076 9077 9078 9079 9080 Sigla 9436 9437 9438 9439 9440	DH Tipologia Profilo sismico a rifrazione Trofilo sismico a rifrazione Trofilo sismico a rifrazione Tipologia MASW MASW MASW MASW MASW MASW MASW MASW	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2036.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_01.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_03.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_04.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_05.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_05.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_05.
Sigla 9024 9032 9072 9073 9074 9075 9076 9077 9078 9079 9080 Sigla 9436 9437 9438 9439 9440 9441 9442	DH Tipologia Profilo sismico a rifrazione Trofilo sismico a rifrazione Trofilo sismico a rifrazione Tipologia MASW MASW MASW MASW MASW MASW MASW MASW	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1218.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2038.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_01.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_03.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_03.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_03.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_03.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_05
Sigla 9024 9032 9072 9073 9074 9075 9076 9077 9078 9080 Sigla 9436 9437 9438 9440 9441	DH Tipologia Profilo sismico a rifrazione Trofilo sismico a rifrazione Trofilo sismico a rifrazione Tipologia MASW MASW MASW MASW MASW MASW MASW MASW	http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/AvtS30.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC1214.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2009.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2012.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2013.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2031.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2032.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2034.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2036.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/DOC2039.pdf link_docum http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_01.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_03.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_04.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_05.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_05.PDF http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Documenti_indagini/Trestina_new_MASW_05.

INDAGINI STUDI MICROZONAZIONE

MICROZONAZIONE CAPOLUOGO CITTA' DI CASTELLO

AREZZO - Via Calamandrei, 265/A - Tel. 0575/33644 - Fax 0575/23230 -

SONDAGGI GEOGNOSTICI
PROVE PENETROMETRICHE STATICHE
PROVE CON PUNTA ELETTRICA
PROVE CON PIEZOCONO
PROVE DILATOMETRICHE
MICROPALI

Ê,	I I	STRATIGRAFIA	DAMETRO DEL FORG (mm)	METGDG DI PERF DRAZIONE
dal p.c. (m) Potenza	Simbolo	Descrizione litologica	DIATA DEL FOI	NE PERFO
5.00	5222	Limo sabbioso argilloso, grigio.		
	2000			
0.00	5251			
	ETET			
	2523	4		
45.00 21	00 = = = =	Sabbia limoso orgillosa, grigia.		
		20000 1111000 0 3		
50.00	<u> </u>			
Secretary of the second	00	Limo argilloso grigio		
55,00			1	
	宣言		1	
60.00	三三			
4	E			
1	三三			
65.00	三三			
	三三			
70.00				
				1

AREZZO - Via Calamendrei, 265/A - Tel. 0575/33644 - Fax 0575/23230 -

SONDAGGI GEOGNOSTICI PROVE PENETROMETRICHE STATICHE PROVE CON PUNTA ELETTRICA PROVE CON PIEZOCOMO PROVE DILATOMETRICHE MICROPALI

. IN	er zuc	0000075	DATA ELABORAZIONE: 21/05/2000		: Città di Castello	There's age	rick:	1200
MMI	TENTE	: Regione Un E: SJ	QUOTA BOCCAFORO (m s.lm.):	LUNGHEZZA (m): 180.00	INCLINAZIONE (gradi):	SCALA GRA	I KA:	1;200
(FUI	RAZIUN	C: 33						
1			ST	RATIGRAFIA	4		DEL FORD (mm)	METODO DI PERFORAZIONE
E	Potenza (m)						E 0	DN DN RAZW
13	20	Simbolo		Descrizione litalogica			100	MET WET
D'C	5 8			Descrizione acologica			T 4	939
무	Po	grafica					-	-
-		-	Limo orgiloso grigio.					
	1		cuite a great in a					
500	24.00	==		- 1 W N A S A				
2.00	21.00	45/47/14/59	Sabbie e limi sabbiosi intercalati a	limi argillosi, grigi.			1	
	1	66196					1	
		200					1	1
								1
30.00								
		12 . 11						
		1,657 2040						
	1. 1	1,00						
		THE	8					1
	1						1	1
85,0	9	1					1	1
00,0	1						1	
								1
							1	
							1	1
		Land Park						
		11,111,110					-	1
90,0	0 15.0	00 000	Ghiaia in matrice subbiosa.				_	1
910	0 10	0000000						10
			Argilla limosa grigia.					1
	1		3					1
	1		=					4
	1						1	1
95	00	-	1				1	
			1					1
	1						- 1	1
	1		1					
	1		3					
		==	₫				- 1	
100	.00							.1
	1		3					
			=					
1	1		=					
i							1	
		-	∃				- 1	
103	00.0		=					1
			=				- 1	
1			<u> </u>					
			=					
	- 1		-					
		-	=					
Y		-	3					
11	0.00		∃					1
			- 3					

AREZZO - Via Calamandrei, 265/A - Tet. 0575/33844 - Fox 0575/23230 -

SONDACGI GEOGNOSTICI PROVE PENETROMETRICHE STATICHE PROVE CON PUNTA ELETTRICA PROVE CON PIEZOCODNO PROVE DLATOMETRICHE MICROPALI

MITTENTE	0000075 : Regione U	DATA ELABORAZIONE: 21/06/2000 mbria	CANTERE:	Citto di Castello	SCALA GRA	FYA-	1200
FORAZION	Æ: S3	QUOTA BOCCAFORO (m s.i.m.):	LUNGHEZZA (m): 180.00	INCLINAZIONE (gradi):	SLALA WA	AT NA	1,200
-		S T	RATIGRAFIA	\		Ê	لوا
dal p.c. (m) Potenza (m)	Simbola grafico		Descrizione litologica			DEL FORD (mm)	METODO DI PERFORAZIONE
		Argilla limosa grigia.					
.00 24.00		Sobbai limoso-argiilosa grigia.					
		3,000 1111020 23,000 3,32					
0.00	<u> </u>						
.00							
0.00							
5.00							
	100 miles						
10 to 15 A		ř.					
40.001 25.0		Subtrato roccioso costituito da a materiale ofilitica.		jilkti e calcarentti, con fraπ	menti di		
45.00							
50.00							Foglio

AREZZO - Via Calemandrei, 255/A - Tel 0575/33644 - Fox 0575/23230 -

SONDAGGI GEOGNOSTICI
PROVE PENETROMETRICHE STATICHE
PROVE CON PUNTA ELETTRICA
PROVE CON PIEZOCONO
PROVE DILATUMETRICHE
MICROPALI

NT : 200	00000076	DATA ELABORAZIONE: 21/06/2000	DATA INIZIO PERFORAZIONE: 07, CANTIERE:	Città di Castella	PERFORAZIONE:		
MMITTENIE REORAZION	Regione U	DUOTA BOCCAFORO (m s,Lm.):	LUNGHEZZA (m): 180.00	NOLINAZIONE (gradi):	SCALA GR	AFICA:	1:200
i diasero			SATICBASIA			1	
P -		ST	RATIGRAFIA			DAMETRO DEL FORO (mm)	METODO DI
120	Simbalo		Descrizione litologica			DAMETRO FORD (m	METODO DI
Polenza (m)	grafica		Descrizione monegos			OEL.	3
D G	~ # W # Y	Subtrato rocciosa costiluito da alte	rnanze di arenorie, marne, orgili	iti e calcarentti, con framm	senti di		
	KAN.	materiale offlitico.				1	
	ERK.						
	XXXX			10.0			
.00	SPIN						
	KKK,						
	8442					1	
11.7	DG B					100	
0.00	HH)						
	KKK.						
1	ELG)					1	
	SAS.						
	わわ					1	1
5.00	1881						
	KKK.					1	1
1.7	1111	8					
	(H)	\$					
70.00	(M)						
	KKA.						
41	ELL.						
	THE.						
	CHI.						
75.90	111	8				1	
	KK K					1	
	4/1	8					Rotazione con scopella a d-
	177						dego
80.00 40.0	SH	×				2	50 2 B
743	14 11 11						
						1	1,
Thurse t	Y CHEOS						Faglio

Dott. Raffaele Rotili Geologo Via D.A. Ascani 7, Città di Castello (PG) tel. 075/8558781 P.IVA 01209440542 C.F. RTLRFL 46T22B963N

SONDAGGIO STRATIGRAFICO TEST Nº S 1

Committente:	DIOCESI DI CITTA' DI CASTELLO	Catasto F. 147 Part.lla S
Comune :	CITTA' DI CASTELLO	Data : 24-25/06/97 Quota : 289 mt. s.l.m.
Località	CAMPANILE CILINDRICO DELLA CATTEDRALE	Prof. Test : 12.0 mt.

Profondità dal p c (mt)	Stratigrafia	Prelievo campioni	Descrizione Litologica	Livello acqua
0.0 -	1 1		-0.0	
0.2 -	1 1 1		payimentazione	
0.4 -			-0.3	
0.6 -			sabble medie con gluaietto	4
0.8 -	0		The state of the s	1
1.2 -	0		-1.0	4
1.4 -			sabbie medio-grosse leggermente limose con	
1.6 -			ghaie e ciottoli	1
1.8 -				
2.0 -	0 2 6			
2.2 -	~ 6 ~		-2.3	1
2.4 -			sabbie medie con ghiaietto	
2.6 -	0		-2.6	
2.8 - 3.0 -			sabbie medie di color nocciola	
3.2 -			poco addensate	
3.4 -				
3.6 -	~		sabbie medio-grosse color nocciola molto	
3.8 -			addensate e leggermente limose	1
4.0 -	***		-4.0	
4.2 -	.0,		sabbie grosse addensate con ghiaia	
4,4 -	0		-4.4	*********
4.6 - 4.8 -	* * * * * * * * * * * * * * * * * * * *		subbic limose medio-fini cementate	
5.0 -	· · · · · · · ·		-5.0	
5.2 -				
5.4 -			1	-1-
5.6 -	3 - 2 - 2			
5.8 -	4.5			
♦ 6.0 −	13 +1 5 (+1		The sold to see a single sold to see	
6.2 -			argille subbiose grigie compatte	
6.4 -	100000		-6.5	
6.8 -			argille grigie compatte	
7.0 -	Strategier (1995)		-6.8	

3.2 -	-3.0
3.4	
3.6-	sabbie medio-grosse color nocciola, molto addensate e leggermente limose
3.8	1
4.0	-4.0
42-	sabbie grosse addensate con ghiaia
4.4	4.4
46-	sabbie limose medio-fini cementate
4.8	-5.0
50- (-5.0
5.2 -	
5.4 =	4
5.6-	
5.8 -	
6.2	argille sabbiose grigie compatte
64-	
6.6	-6.5
6.8	argille grigie compatte
7.0	-6.8
72-	
74-	sabbie grossolane, leggermente argillose
76-	
7.8 - C1	-8.0
8.0- 2:2:-	-8.0
8.2	sabbie medio-fini argillo-limose
84	
8.6 -	-8.6 subbic medie leggermente limose
88	-8.8 sabbie medie argillose
90-	-9.0 argille sabbiose
92- ====	-9 2
9.4	sabbie medie argillose –9.6 argille leggermente sabbiose
9.6	-9.8
10.0 -	7.0
10.0 -	sabbic medie argillose
10.4-	144
10.6 -	-10.6
10.8 -	sabbic medio-grosse leggermente
11.0 -	argillose e poco addensate
11.2 -	
11.4 -	
11.6 -	-11.7
11.8 -	sabbie grosse argillose
12.0 - 5 + - 5	-12.0 con bassa % di ghiaietto

Note Presenza di acqua di circolazione alle profondità di 4 30 mt. Prelievo campioni : C1 da -7.6 mt. a - 8.0 mt.

FOCAL	ITA Città d	EDA	ARCO Maggio 1991
COM	HITTENTE		
ATOUA	LITOLOGIA	ALDA	DESCRIZIONE
	*****		Riporto granulare
2.00	300		Sabbia fine bruna in matrice limoso-argillosa, addensata,
1	~ ~		satura (B)
4.00	三三	1	
	<u> </u>		
6.00	<u>-</u>		I S
			Argilla grigia,umida,semisolida (C)
	==	*	
8.00	==		
10-60	==		*
	1		
12.00			Sabbia limosa grigia,addensata,satura (D)
	0000		Sanola limosa grigia, addensata, satura (b)
14.00	00000	1	
	0000		
16.00	00000		
4	00000		Chiaia fluviale poligenica, clasti sub-appiattiti, diametr 2-6 cm. (E)
18.00	0000		2-6 cm. (E)
	0000		
	00 000		
20.00	7. Car.	+	×
		÷	_ 4 s_
	Î		$\mathcal{L}_{\lambda}^{\mathcal{L}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}^{\mathcal{L}^{\mathcal{L}_{\lambda}^{\mathcal{L}_{\lambda}^{\mathcal{L}^{\mathcal{L}^{\mathcal{L}_{\lambda}^{\mathcal{L}^{\mathcal{L}^{\mathcal{L}_{\lambda}^{\mathcal{L}^{\mathcal{L}_{\lambda}^{\mathcal{L}^{$

_	
_	_
	_
•	
_	_

Ordine Nazionale Geologi Dott. RAFFAELE ROTILI Iscr. Albo N. 2796					I		CANTIERE CITTA DDI CAST'LLO SONDAGGIO 53		Sistema COTAZIONE MAIT Sistema COTAZIONE Data SHPTEMBRE (SOF				
del foro	Spessore	Profondita'	Litologia	Pocket Penetrom. R.P. Kg/cm ²	Campioni	Campioni	Descrizione dei terreni attraversati	Falda	Ounte	S. P. T. Numero Colpi N'	Percentuale Carotaggio %	Osservazioni	
400	4.00	1.00 2.50 3.00 4.00 5.00		1.8			LINO-ARGILLOSO RIMANEGLIATO CON INCLUSI VARI. LINO-SABBIOSO ARGILLOSO DI COLORE GRIGIO-VERDA STRO FRIABILE HEDIAMENTE COMMITTO CON TRACCE DI MATERIA DREANICA. LINO-SABBIOSO DE BOLMENTE ARGILLOSO DI COLORE MARRONE CHIARO SATURO HOLLE POCO PLASTICO CON TRACCE DI MATERIA ORGANICA.	The state of			20 40 60 66		
	3.00	60m 7,00 8,00	000000000000000000000000000000000000000	>4.00			GHIAIR-SABBIOSA ACQUOFFDEA ARFILLA SILTOSA FRIGIO-AZZVRRA CONPATTA.						

MMO	ITTENTE		COMUN	F CIPPA' DI CASTELLO
TA	LITOLOGIA	FALDA	CAMPI	DESCRIZIONE
.00	 			Argille e Limi argillosi avana con noduli biancastri mediamente compatte
.90		3		Argille limose giallastre con venature azzurre contenente ciottolini calcarei
00.00				Livello sabbioso con infiltrazione acquifera
200				argilla marrone con venature azzurre compatta
2.00	0.00.00			ghiaia sabbiosa acquifera

		Is	ne Nazionale RAFFAELE cr. Albo N.	ROTTI 2796	I		CANTIERE CITTA' DI CASTELLO "LA TINAL SONDAGGIO S2		Sist	ema Percus		
del foro	strati	Profondita dal p.c.	-	4 4 4	Campioni	Campioni Rimaneggiati	Descrizione dei terreni attraversati	Falda		P. T. Numero Colpi N'	Percentuale Carotaggio	Osservazioni
	2.10	2 (0	%				TERRENO DI RIPERTO DATO DA LIMI-ARFILMI RIKANEGGIATI. LINO-ARGILLOSO HARRONE CHIARO COMPATTO.				20 40 50 40	
2.	Da .	0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				PHAIR-SABBIDSA BCQUIFERA					
5.00	fs	80 0 0 0 0					GABBIA-LIHOSA AZZUARA, FODBNSATA.					-
1.50	23.50	が報号とよる はおおめる	200			AR	BBIA ADDENSATA A FRAN VLOKETRIA					
							1.0		~			4

COMMITTENTE: SOC. IMMO, LIFERWATE, STUDIO GEOLOGICO CANTIERE : CITTA' DI CASTELLO DOTT. ROTILI RAFFAELE SONDAGGIO: S POKET PENETROM RP KG/CM CAMPIONI VANE TEST FALDA DESCRIZIONE DEI TERRENI ATTRAVERSATI LITOLOGIA ARGILLA MARRONE COMPATTA AREILLA SABBIOSA CIALLASTRA CHIAIA IN HATRICE LING SABBIOSA 3.00 ARGILLA AZZURRA SABBIOSA CON INTERCALA-ZIONI CHILIOSE ACQUIFERE. 1500

	Date	DA A TOTAL	GICO-DECEMBRA BARDROTILI OGO Jonale 6-3-1977 27961 L.	sondaggio n° 🚜	
			itlCoop 014	CESCRITIONE LITTUCCICA	
Ф	ealopolois =		<u> </u>	Marrano varetale	
05				Argilla limosa gialla- stra,di buona consisten-	γ=1,98 g/cm ³ σ _I =1,80 kg/cm ²
	100			Z8.	
				Sabbia limosa giallastra,	
1		16		bene addensata.	+ 3e
			B.07.6.71	,	
			0,000	Ghiaia mista a sabbia.	e e
	-4-	-	00000		
			0.00.00	STU	
		1 11	10.19		

	1	Dott, I	e Nazionale RAFFAELE er, Albo N. 2	ROTTL	i I		CANTIERE PALAZZETTO DELLO SPORT SONDAGGIO S2	2_	Sistema ROTAZIONE Data MAGGIO 1883								
mm.	strati	Profondita' dal p.c.	Litologia	Pocket Penetrom R.P. Kg/cm ²	Campioni	Campioni	Descrizione dei terreni attraversati	Falda	Quote	S. P. T. Numero Colpi	Percentuali Carotaggio	Osservazion					
4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		200 400 400 400 400		3.50 4.60 3.70 3.70 3.80 4.60 3.60 4.60 3.60 4.60 5.60			COPERTURA VEGETALE DI NATURA LINE-ARCILIOSA CON SOSTANZE DREANICHE. ARCILLA-LINOSA HARRONE PLASTICA. ARCILLA-LINOSA HARRONE PLASTICA. ARCILLA-LINOSA HARRONE PLASTICA. LINO-SABBIOSO AVANA UNIDO LINO-SABBIOSO E ARCILLOSO ERICIO-AZZURRO VISIBO CAIAIA-SABBIOSA DEBOLMENTE ACQVICERA CON LIVELETTI BINO-SABBIOSI. ARCILLA-SILTOSA CRICIO-AZZURRA COMPATTA. CHIAIA-SABBIOSO AVANA SATURO ARCILLA-SILTOSA GRICIO-AZZURRA COMPATTA. E VENATURE MARRONI. ARCILLA-SILTOSA GRICIO-AZZURRA COMPATTA.										

STUDIO GEOLOGICO

Dort ROTILI RAFFAELE

CANIJERE CITTA' DI CASTELLO

SONDAGGIO: S2

IN MI	LITOLOGIA	FALDA	CAMPIONI	DESCRIZIONE DEI TERRENI ATTRAVERSATI	POKET PENETROM RP KG/CM	VANE TEST
				Mopertura agraria argillo-limosa.		
				Argille-limose avana con noduli neri livelli decimetrici limo-sabbiosi ad umidita' abbondante.	e:	
0		=		Sabbia-limosa acquifera. Argille-limose avana con concrezioni calcaree e livelli limo-sabbiosi. A diverse quote si hanno livelli		
The second secon				di argille, di spessore modesto, plastiche.		
0				Argilla marnosa marrone compatta.		
0						
				Argille-limose come da mt.6.5 a mt. 14.00.	M &	of h
0	0.000000	0		Ghiaia-sabbiosa acquifera.	long	
~				Argilla-siltosa azzurra compatta.		

SPT1

SOILJEST

AREZZO - Via Colomandrei, 265/A - Tel. 0575/33544 - Fax 0575/23230

PROVE PENETROMETRICHE STATICHE PROVE CON PUNTA ELETTRICA PROVE CON PIEZOCOBIO PROVE DLATOMETRICHE MICROPALI

	DATA ELABORAZIONE: 11/05/2000	DATA INIZIO PERF	RAZIONE: 15	/04/2000	DATA FINE	PERFORAZIONE: 19/04/2000
RIF_ INT :: 2000000050			CANTERE:	Città di Caste		Towns 1800
COMMITTENTE: Regione UI PERFORAZIONE: \$1	QUOTA BOCCAFORO (m. s.l.m.):	LUNGHEZZA	m): 78,00	INCLINAZION	E (gradi):	SCALA GRAFICA: 1:100
MACCHINA PERFORATRICE	OLF. C. D.D.	TIE	CNICO RESPO	ONSABLE: Dott.	D.Senesi	
	BLE: 5:g. K.Figa ovc per prova dawn-hole, cementoto es enatration Test. PT=Penetrametro Tas	sternamente, protetti scabile. VT=Vane T	p.c. da chiu est. ST=Sc	isino in ferro. Issometro Toso	obile.	

	_		STRATIGRAFIA			PERCENTUALE	• SPT	e VT	E	No.	벌	3
dollarso (m)	(w)	Simbolo grafico	Descrizione Iltalagica	Protondità di prefero (m)	Compandare Igo di prellevo	CAROTAGGIO 50 s	(m) N. cops O PT (m) Kg/cmq	○ ST	-	WETODO	PERFORAZIONE	STABLIZZAZIONE
1		WE WE	Elementi litoidi eterogenei, eterometrici, Dmax>10 cm in scarsa matrice sabbiosa avana. (Terrena di riporto)									
1.90	0.90		Lima sabbioso, debalm, argillaso ed argillaso, marrone e nocciola, da consistente a malta consistente.	1.0	Pareli sollii		3.00 3.50 3.00 03-05-07	O 2.0 0.88 O 3.5 0.52	0			
					l		Q 4.50 2.50					
5.30	0.80	12.72	Sabbig media-grasso, con limo e limosa, debolm, ghiclosa nella parte bassa, marrone, con clasti Dmax 2 cm (clasti 0-lbx). Presente alla bsa livello centim, di limo argillosa sabbiosa.				6.71					
va.oc			Giniaia eterametrica con roi ciottoli, mediamente addensato, con clasti eterogenei, arrotondi, e subarrotondi. Dinax 9 cm, Dmed 3-4 cm, in matrice sabbiosa e sabbiosa-limasa. nocciola e marrone, a tratti abbond. (clasti 70-90m).				16-19-20 G 112					
11,40	5.	NPO A O O O O	Limo sabbioso debolm, orgilloso possante con argillo, nocciol	a,		1	1.60	0.78	.70	.1		
12.1	0.00	70 —	do mediamente consistente a consistente. Argilla sabbiaso limosa, grigia, mediamente consistente.				0 12	0 0 1	RA			
13.0	0 0	90	Presenti nella parte bassa passaggi centimi ai sabolo media				1.40	0.6				
15.0	10	000000000000000000000000000000000000000	Ghidia eterometrica con ran ciottof, da mediamente addensata ad addensata, con ivelli centim, camentali, clasti eterogenei, arratand., Dracx 10 cm, Drack 3 cm, in matrice sabbiosa-limosa nacciola ed avana (clusti 80-90x).									
13,5	- K		Sabbia media limosa passante debolm, limosa, nocciala.			1.						
16.2	30	1,00		-			50/14					
	1	by CHEOS	0	_	-14		11300					Foglio

AREZZO - Via Calamandrei, 265/A - Tel. 0575/33644 - Fax 0575/23230 -

SONDAGG: GEOGNOSTICI
PROVE PENETROMETRICHE STATICHE
PROVE CON PUNTA ELETTRICA
PROVE CON PIEZOCONO
PROVE DILATOMETRICHE
MICROPALI

RF. INT: 2000000050	DATA ELABORAZIONE: 11/05/2000	DATA NIZIO PERFORAZIONE: 15/	04/2000 DATA FINE	PERFORAZIONE: 19/04/2000
COMMITTENTE: Regione L	Imbria	CANTERE:	Città di Castello (PG)	
PERFORAZIONE: S1	QUOTA BOCCAFORO (m s.l.m.)	LUNGHEZZA (m): 78.00	NOLINAZIONE (gradi):	SCALA GRAFICA: 1:100

2		STRATIGRAFIA		PION	PERCENTUALE	• 57	• VT	(E		ين	- 9
dol p.c. (m) Potenzo		Descrizione litologica	Profondilà di prelievo (m)	Complessione	DI CAROTAGGIO 50 x	(m) N. copi O PT (m) Kg/cmq	O ST	DEL FORD (mm)	METODO	PERFORAZIONE	METODO DI STABILIZZAZIONE
20.00	0.000 0.000	Ghiala eterometrica con rari ciattali, addensata con passaggi centim: cementati, con clasti eterogenei, arrotond., Dmax 9 cm, Dmed 3-4 cm, in matrice limoso-sabbiosa e limoso-argillasa, marrone e nocciola (clasti 80-90*).				0 7190					
5/10		Limo con argilla debalm, sabbiosa, avana e nocciola, cansistente.		Ш		2.50	1,32				
22.70 02	80	Argilla limosa, grigia, da consistente a molto consistente. Livello (24.0-24.3m) ghiciosa con clasti Dmax + cm. Presenti rare e minute concrez, carbonatiche, Dmax 1 cm.	7380	Poreli sollii Pressione		O 23.00 2.30	O 23.60				
25.00			24	2 4		□ 24 80 3.20	O 24.80 1.60				
27.70 5.0	000					25.00 3.50	O 26.50 160				
		Limo argilloso debolm, sabbioso, da consistente a molto consistente, con frammenti conchillari e rari inclusi litoldi, Dmax 2 cm.	79.00	Perelt sollif		O 28.50 2.40	O 28.50 1.12			Ш	
29.30 1.5 30.00	50	Argilla con lima e limosa, graja, con passaggi nella parte bassa grigio-verdastri, molto consistente, a tratti debolm, sabbiosa. Presenti rari frammenti conchiliari, Dmax 1 cm.	29.65	Pore		O 29.90 3.00	O 29.90 1.44				
						710 O 2100	O 3100			3	
						32.50 J.80	O 32.50				
						O 33,70 4,50	O 33.70 2.20				
35.00						O 35.80 J.60	O 35.80				

AREZZO - Via Calamandrei, 265/A - Tel. 0575/33644 - Fax 0575/23230 -

PROVE PENETROMETRICHE STATICHE PROVE CON PUNTA ELETTRICA PROVE CON PIEZOCONO PROVE DLATOMETRICHE MICROPALI

RF. NT.: 2000000050	DATA ELABORAZIONE. 11/05/2000	DATA INIZIO PERFORAZIONE: 15/04/2000 DATA FINE	PERFORAZIONE: 19/04/2000
COMMITTENTE: Regione		CANTERE: Città di Costello (PG)	LEGILA COASICA: 1:100
PERFORAZIONE: ST	QUOTA BOCCAFORO (m s.l.m.):	LUNGHEZZA (m): 78.00 INCLINAZIONE (gradi):	SCALA GRAFICA: 1:100

2			STRATIGRAFIA			PERCENTUALE	(m) Spt	• VI	25	0	중	8	25
dal p.c. (m) Potenza	(m)	Símbolo grafica	Descrizione litalogica	Profondilà di prelievo (m)	Complementaria	CAROTAGOO	O PT	O ST	DAMETRO DEL FORO (mm)	MET000	PERFORAZIONE	METODO DI	STABLIZZAZIONE
			Argilia con limo e limosa, grigia, con passaggi nella parte bosso grigio-verdastri, molto consistente, a tratti debolm sabbiosa. Presenti rari frammenti conchiliari, Dmax 1 cm.				3.90	0 37.30 196					
9.30	10.00						2.80	1.44					
0.00	0.40	茎	Limo con argilla ed argilloso, debolm. sobbioso e sobbioso, grigio-verdastro, molto consistente. Presente nella parte bassa livella decim. di argilla limoso.		H		• 40.5k	O 39.9	2				
0.60	1.30		Limo sobbioso e con sabbia, argilloso e debolm, argilloso, grigio, con passaggi centim, di sabbia limosa.		11		12-27-30						
1.30	0.70		Sabbia media con limo e limosa, debolm, argillosa, grigia.		H								
	100	0000	Sabbia medio-grossa, ghiaiasa e con ghiaia, debolm. Emoso, grigia, con clasti Dmax 4 cm (clasti 0-40x).	1									
45.00 47.10	4.1	00.00000000000000000000000000000000000	Chiaia eterametrica con rari ciottoli, con clasti eterogenei, orratond., Omax 10 cm, Omed 3 cm, in matrice sabbiosa e sabbiosa-lirnosa grigia (clasti 80-90x)										
17.59	748		Sabbia medio-grassa a grassa, limo sa e debolm. limosa, a tratti debolm, ghiaiosa, grigia.				0 191	90 0 48.	90				
50,00	120		Argilla limosa grigia, molto consistente, con concrez. carbonatiche, Dmax 2 cm.				3,60	180					
50.90	2.1		Lima argilloso sabbioso passante can orgilla debolm, sabbios grigio, malto cansistente. Presenti concrez, carb., Dmax 2 c	о. П.			O 51,	80 🖒 51 180					
52.90	- 2.0	0 = =	Argillo con limo, a trtali sobbiosa, grigia con striat, marrori molto consistente		1		o 53					1	
53.90	1.0	00	Sobbia da fine a media, limosa e con limo, grigia. Presente al tetto livello centimi di limo con sobbia.							1			
55.00	1	101	Sabbia media grigia	-		1			1				
55.50	0.5	60	Arailla imosa, grigia con striat, marroni, molto consistente.	-	- 1			-			_	Fag	E-

AREZZO - Via Calamandrei, 265/A - Tel. 0575/33644 - Fax 0575/23230 -

SONDAGGI GEOGNOSTICI PROVE PENETROMETRICHE STATICHE PROVE CON PUNTA ELETTRICA PROVE CON PIEZOCONO PROVE DLATOMETRICHE

	000000050	DATA ELABORAZIONE: 11/05/2000 DATA INIZIO PERFORAZIONE	ERF: (Città	di Castello				: 19/04/20	
MITTENT	E. Regione Un	norie			INAZIONE I		S	CALA (RAFICA: 1	100
FORAZIO	INE: 51	QUOTA BOCCAFORO (m s.lm.): LUNGHEZZA (m): 78								
-	-	STRATIGRAFIA	CAM	MOI	PERCENTUAL	F - SPT	• VT	F	142	9
Ē-		3168613111	9-0	2 8	DI	(m)		25	20 00	0 0
dal p.c. (m) Potenza (m)	Simbolo	According to the Market State	Profondià di prelievo (m)	preli	CAROTAGGE		o sī	DEL FORD (mm)	METODO DI PENFORAZIONE	NETODO DI
E E	grafica	Descrizione litologica	ofon	할	50 x	(m)	1	PH	E E	2
유유	granca		E M	3 8	homonhom	Kg/cmq	Kg/cmc	-	- 7	,
00 040		Argilla limasa, grigia con striat, marroni, maito consistente.		VI.						
	± 5	Sabbia da medio-fine a media, limasa e debaim. ilmasa,		П		1	1			
7.00 1.5		griçia.	1	Ш		1				1
TAN LA		Argilla con lima e limosa, grigia a tratti nerastra, debalm.		П		1		1	1	1
	=	sabbiosa nella parte alta, molto consistente.				2000			1	
				11	1	4.50	224	9		1
						120	1	1		V
					1	11	1			
						-	0 59.8	0		
2 00			1			O 50.0	0 130		1	18
0.00					-	3.80	1			1
				11	1	II .	0 61	00	1	
1				W	1	11	1,84		1	
				Ш	1	1 0			1	
- {			1	11		350	101	4	1	1
				11		1	1		1	
			2	Ш		11			1	
53.00 5.	00	Limo con argilla debalm. sabbioso, con passaggi di argilla con	7	П	1	И	O 63.	50		1
		limo, grigio, da consistente a molto consistente.	4	11		41	1.28			
54.10	100 == =	Walterto a distriction	-		1	1	1 =		1	
	==	Argilla con limo, grigia, da molto consistente a dura, con possoggi decim, di limo con argilla e rari centim, di sabbia.		11		0 84.	70 O 54.	70		
55,00		bessedd assured to	1	11		3.50	1/0			
13172				П	1	41	1		1	
				11	1	M.	4			
				\mathbf{I}						
			8	=		-			1	
			167.20	Poreli sollii	9000	7.00	.70			
		1		0.6	SS SS	100				
				T		11	1			
				Ш				-		1
			.1		V	11	1	1	1	1
		3				11		4		4
						0 70	001			
70.00	==	3	1		111	7.00			1	
		3	1			11			1	1
					6	11			1	
				10						1
		3			14	11				1
	=-									1 3
						1	100 - 1	500		0
		₫				3.7	0 00.7	8		Tubi o
						11				
8	-									1
								1		
74.60	0.50	- Sabbia media-fine limosa a tratti debolm. limosa, grigia.								
75.00	1	Presenti passaggi centies di Ente con sabbio.			1		-	-	_	Faglio

AREZZO - Via Colomondrei, 265/A - Tel 0575/33644 - Fox 0575/23230

SDNDAGGI GEOGNOSTICI PROVE PENETROMETRICHE STATICHE PROVE CON PUNTA ELETTRICA PROVE CON PIEZOCONO PROVE DILATOMETRICHE MICROPALI

IMM	TENI	Regione U	morio	LUNGHEZZA (m): 7	B.00	INCL	di Castello (INAZIONE (g	radi):	S	CALA G	RAFICA: 1:	100
RFO	RAZIO	E: \$1	QUOTA BOCCAFORO (m s.lm.):	Transfer Ange								
-	-		STRATIGRA	FIA	CAME	INON	PERCENTUALE	• 97	· VT	(Wi	¥	- N
dol p.c. (m)					3 B	Completatore Tipo d prelievo	DI COOTI COO	(m) K copi	0 51	DAMETRO DEL FORO (mm)	METODO DI PERFORAZIONE	METODO DI STABLIZZAZIONE
ü	Potenza (m)	Simbolo	Descrizione lita	onica	Profondilà di prelieva (m)	pre	CAROTAGGIO			E SE	NET NET	DT3A
a.	G E	grafico	Descrizione iro	ogica	relie	0 0	50 x	O PT (m) Kg/ema	Valena	B	8	- VIS
lop	P.	90.500			a u	PE	mendanadi	Kg/emg	Kg/cmq			
			Sabbia medio-fine limosa a tratti de Presenti passaggi centim. di limo co	bolm, kmosa, grigia. n sobbia.	1							
			Presenti passagai certina di milo so			11						
					1						_ 1	1
						11	1 1			1118	Ser col	
					1					1	Referione con carollere sem- plice a secco	1
						H				10	Rold	
78.00	3,40	9.55				H						1
						VЦ		1				1
					1	11				1		1
						11			1		1	
			1		1	11		1			E .	
	1					11		1	1		1	
	1					11		1	1		1	
		1	1			11	(1	1			
	1		1			11					1	
	1		Į.			11	1	1	1	1	1	
	1	1				11		1		1		
						101		1		1		
	1	1			1	14	1		1		1	
			ľ			11		1	. 1		1	
		1				11	4	1	1	1	1	
	1	1				11	1	1	1	1	1	
	1				1	11			1		1	
	1					11		1	1	1		
						11		1			1	
			1			11			1	- 18		
	Y	1	1			11	1		1	11		1
	1		1		1	11	1	1		1		1
	1							4	1			
						-11		1		1		
		1				- 1-1						1
			1			-11		1			1	
		1	\			10			4.		1	1
					- 12	1.1		1	1			
					- 4							
			N.				(4)	1			1	
					1		M					
					1		1 8					
	1	1								1		
							10					
							1.1					
	100	1				1	1 1					

AREZZO - Via Calamandrei, 265/A - Tel. 0575/33644 - Fax 0575/23230 -

SONDAGGI GEOGNOSTICI PROVE PENETROMETRICHE STATICHE PROVE CON PUNTA ELETRICA PROVE CON PIEZOCONO PROVE DILATOMETRICHE MICROPALI

RF. INT.: 2000000045	DATA ELABORAZIONE: 05/05/2000	DATA INIZIO PERFORAZIONE	: 27/04/2000	DATA FINE	PERFORAZIONE 28/04/2000
COMMITTENTE: Regione L	Imbrio	CANT	ERE: Citto di Cos	ella (PG)	
PERFORAZIONE: S2	QUOTA BOCCAFORO (m s.Lm.);	LUNGHEZZA (m): 21	DO INCLINAZIO	NE (gradi):	SCALA GRAFICA: 1:200
MACCHINA PERFORATRICE	Puntel PX 1200				
PERFORATORE RESPONSA	ABLE: Sig. R.Piga	TECNICO R	SPONSABLE: Dot	. D.Senesi	
NOTE: Inserito tubo in p SPT=Standard Pe	pucper prova down-hole, cementato este enetration Test. PT=Penetrometro Tasc	rnomente, proletto p.c. da abile. VT=Vane Test. ST	hiusino in ferro. =Scissometro Tos	cabile.	

10			STRATIGRAFIA		MPIO		PERCENTUAL	- S-		VT	E		4	19
dol p.c. (m)	Patenza (m)	Simbolo grafica	Descrizione litologica	Profondid d	Campionalore	lipo di prelevo	DI CAROTAGGO 50 =	(m) N. copi O PT (m) Kg/cmq			DEL FORG (mm	METODO	PERFORAZIONE	METODO DI STABILIZZAZIONE
150	L60	ごうごう	Elementi litoidi e frammenti di laterizio, eterometrici, Dmax>10 cm, in matrice sobbiosa, marrone (Terreno di riporto).		l.	Ì								
320	1.60		Limo argilloso, sabbioso, nocciola, mediamente compatto, con inclusi litoidi e frammenti di laterizio, o tratti abbondonti, Omax 5 cm (terreno di riporto?).		sollii	99		0 2.70 140 0 3.80	0	3,40				
4,30	1.10		Limo con argilla , a tratti sobbioso, intercalato a livelli centim, di argilla con limo, nocciola e marrone, da chiistente a molto consistente.	14.50 14.50	Porell	Pressio		3.50 • 5.00		180		V		
			Limo argilloso, debolm, sabbioso e sabbioso, a tratti (7.1-7.5m) ghiciaso, grigio chiaro, molto consistente. Presenti passaggi centirn, e decim, di orgilla con limo.	8.70	Porell soilil	essique		12-71-25 0 8.10 4.00 0 7.50 5.00 0 8.50	0	5.40 184				
10.00				10	Po	Pr		1.70 0 10.20 6.00						
12.30	8.00		Argilla limosa ∈ con limo, grigia e grigio chiaro, molto		Н			580 5280 0 1280					1	
			consistente, Passaggi centim, e decim, (13.4—13.7m) di limo con argilla,		И			5,00 O 13,90 5,00						
14.90			Limo con argilla, grigio chiaro, con frequenti passaggi di argilla con limo, da molto consistente a dura.		П			O (5.50					1	
15.40	150		Argillo con limo e limosa, grigia possante grigio-azzurra, molto consistente a dura, con concrez. carbanatiche, Dmax 2 cm.		8			G 17:00 5:00 G 18:10						
18.20	2.40				П			7 ING O 19.20			1.77	CON SET	1	0
19.50	0,70		Lima argilloso, grigio, dura,		Ш			7,00		1		ore ore		mei
21.00	1.50		Lime sabbiese debolm argillose, grigio chiare, con passaggi cantim di sabbia fine limesa.								101	Rotazione con carallere sem- plice a secco	1.61	rivestimento
El wor	a hu	GHEOS											For	gia I

AREZZO - Via Calamendrei, 265/A - Tel. 0575/33644 - Fax 0575/23230 -

SONDAGGI GEOGNOSTICI
PROVE PENETROMETRICHE STATICHE
PROVE CON PUNTA ELETTRICA
PROVE CON PIEZOCONO
PROVE DLATOMETRICHE
MICROPALI

RF. NT.: 2000000045	DATA ELABORAZIONE: 05/05/2000	DATA INIZIO PERFORAZIONE: 03	/05/2000 DA	TA FINE PERFORAZIONE; 03/04/2000
COMMITTENTE: Regione	Umbria	CANTERE	Città di Castello (F	⁹ G)
PERFORAZIONE: SS	QUOTA BOCCAFORO (m slm.):	LUNGHEZZA (m): 30.00	INCLINAZIONE (gr	odi): SCALA GRAFICA: £100
MACCHINA PERFORATRIC	E: Puntel PX 1200			
PERFORATORE RESPONS			ONSABLE: Dolt. D.Se	nesi
NOTE: Inscrito tubo in SPT=Standard f	pvc per prova down-hole, cementato e Penetratian Test. PT=Penerometro To	sternamente, protetto p.c. da chi scobile. VT=Vane Test. ST=Sc	usina in ferro, issametra Tascabile.	

(E	-		STRATIGRAFIA		PION	_	RCENTUAL	301	· VT	(mm)		1	5
dol p.c. (m)	Potenza (m)	Simbolo grafico	Descrizione litologica	Profondità di prefieva (m)	Campionalore	npo a preleva	DI ROTAGGIO 50 ×	(m) N. copi O PT (m) Kg/cma	O ST	DIAMET D. FORD	METODO	PERFORAZIONE	METODO DI
0.80	0.80	11.500 C	Elementi litiodi eterometrici, eteragenei, Dmax 5 cm, in abbondante matrice limasa-orgillosa, marrone. Presenti resti untropici. (Terreno di riparto)						1				
			Lima argilloso e con argilla, debolm, sabbiosa e sabbioso, marrone, da consistente a molta consistente. Presenti minuti frammenti di laterizio ed Ox Fa-Mn, Dmax 3 cm. (Terreno di riparto?)					O 170	1.20				
350	2,30			320	Pereli sollit	Tessione		3,00	1,15	2			
330	2.79		Limo con orgina subbioso, nocciola, consistente, con 0x. Fe-Mn, Dmox 1 cm		E.	1		04-04-05	0 4.5				
4,90 5.30	0.40	000000	Ghiaia medio—fine con clasti eterogenei, Dmax 5 cm, Dmed 2 cm, in abband: matrice limaso—argillosa, noccida (clasti					0 5.40	0.92				
5.70 6.10 6.40	0.40	==	40-90x). Arailla con limo nocciola con stiat, grigie, molto consistente. Limo argilloso sabblioso grigio con striat, nocciola, molto					5,00	2.00	1			
3.74			Consistente. Arailla con lima, grigia-verdastra, molto consistente. Lima sabbiaso argillosa, passante con sabbia, grigia.					2.50 2.50					
9.00	2.50			07.8	Poreli sollia	SSIONE							
X7.00		0.0000000000000000000000000000000000000	Ghiaia eterometrica, addensata, con clasti eterogenei, protona e subarratand, Dmax 4 cm, Dmed 2 cm, in matrice limosa-sabbiosa e limosa-orgiliosa, grigia (clast) 70–90x). Presente livello (9.8–10.0 di limo argillosa sabbiosa.	U, o	Po	11		9.80 39-26-42					
12.10													
14.10			Limo con sobbia grigio. Ghidia medio—fine con limo, con clasti eterogenei, Dmax 4 cm, in matrice irmoso—sabbiasa, abband, nella porte biassa, grigia (clasti 50—90x). Livelli (12.5—12.6, 13.4—13.6m) di limo con sabbia.										
15.00			Limo con sobbia e sobbioso, a tratti debolm, argilloso ed argilloso, grigio chiaro e grigia, addensato. Presenti passaggi centim, di sabbia fine con limo.					329 • 1539 15-29-39					*
								15-29-37					
.0	a Ch	CHEOS			Ш	1	- 1					· P	ogia 1

AREZZO - Via Calamandrei, 265/A - Tel, 0575/33644 - Fax 0575/23230 -

SONDAGGI GEOGNOSTICI
PROVE PENETROMETRICHE STATICHE
PROVE CON PUNTA ELETTRICA
PROVE CON PEZOCONO
PROVE DLATOMETRICHE
MICROPALI

		Regione Un	QUOTA 80CCAFORO (m s.Lm.): LUNGHEZZA (m): 3			di Costello LINAZIONE (S	CALA C	RAFICA: 1	:100)
ERFO	(AZIUI	Æ; S5	QUUIA BOCCAFORD (III SEIT).	.,	100	and the later of	22					
			STRATIGRAFIA	-	PION	-		e VT	E	4		4
dal p.c. (m)	rotenza (m)	Simbolo grafico	Descrizione litologica	Profosdid d	Campionalare	CAROTAGGX	O PT (m)		DEL FORD (mm)	METODO DI PERFORAZIONE	METODO DI	THE PART OF THE PA
M 70	5.20		Limo con sobbia e sabbioso, a tratti debolm, argilloso ed argilloso, grigio chiaro e grigio, addensato. Presenti passaggi centim. di sabbia fine con limo.	0081	Perell sollif							
19.30	0.60	000000	Sabbia media-fine debolm. limasa, torbosa nella parte bassa, origia. Presente alla base livello centim, di lima con sabbia. Chiaïa eterametrica, addersata, con clasti eteragenei, Dmax 6 cm, Dmed J-4 cm, in matrice limasa-sabbiasa grigia, abbond, nella parte bassa (clasti 60-90x). Presente livello	2	P. 18							
22.40	2.50		(20.7–21.1m) di sabbia fine con limo.				21-50 21-47-50					
23.20	0.80		Limo con orgilla debolm, sabbioso e sabbioso, grigio chiare, molto consistente.								1	
			Argilla con lima e limosa, grigia, molto consistente.				O 23,70 4.10	O 25.70 2.00				
24.50 25.00	1.50		Lima sabbioso debolm. argilloso, grigio.									
25.90	1.40	000000000000000000000000000000000000000	Ghiaia eterometrica con absti eterogenei, arrotond., Dmax 4 cm, Dmed 2 cm., în abboild. matrice limoso sabbiosa grigio (clasti 50-90x).									
78.10	220	000000	Limo argilloso debolm, sabbioso, grigio, molto consistente,		П		O 28.50				I.	
78,70	0.60	==			П		5.00	1		5 6 8		
	7		Argilla con limo, grigia, melto consistente.		П		20.00			Rolazione con caroliste sem- pice o secco	ibi di	werdinently.
30.00	130			-			4.00	2.00	10	Pe co	19	ANIA

Software by CHEOS

AREZZO - Via Colamondrei, 265/A - Tel. 0575/33644 - Fox 0575/23230 -

SONDACCI GEOGNOSTICI PROVE PENETROMETRICHE STATICHE PROVE CON PUNTA ELETTRICA PROVE CON PIEZOCONO PROVE DLATOMETRICHE MICROPALI

RE, INT.: 2000000051	MATA ELABORAZIONE: 18/05/2000	DATA INIZIO PERFORAZIONE: 08	/05/2000 DATA FINE	PERFORAZIONE: 10/05/2000
COMMITTENTE: Regione Umbrio	1	CANTERE:	Città di Castello (PG)	
PERFORAZIONE: 524 QUI		LUNGHEZZA (m): 35.00	INCLINAZIONE (gradi):	SCALA GRAFICA: 1:100
MACCHINA PERFORATRICE: Pur	rtel PX 1200			
PERFORATORE RESPONSABILE:	Sig. R.Piga er prava dawn-hole, cementato est		INSABLE: Dott. D.Senesi	

(E)	_		STRATIGRAFIA			PERCENTUALE DX	(m)	• AL	(m)	2	10
dol p.c. (m)	Potenza (m)	Simbolo grafica	Descrizione litalogica	Profandilà di nreleva (m)	Comprehensional	CAROTAGGIO	(m) N. compi (m) Kg/cmq	O ST	DAMETRO DEL FORO (mm)	METODO DI PERFORAZIONE	METODO DI
0.70	0,70	1/C1/C	Elementi litoidi eterogenel, eterometrici, Dmax>10 cm in matrice limoso-sabbioso (Terreno di riporto)		IT						
			Limo argilloso, sabbioso nela parte bassa, nocciola, molto consistente.	8	Parell salliii		O 150				
	100			1200	ell ell						
2.30	1.50		Limo sabbiosa debolm, argilosa, avana, can passaggi centim, di sabbia fine con limo.	1 4	P. P.						
3.00	0.70		Limo argillosa sabbioso avena, consistente, con passaggi centirn, di sabbia fine con limo.				2.00	0.72			
4.30	130	==	Limo sobbioso e con sabbia, debolm, argilloso, avena.		Ш		250	1.12	1		
5.20	0.90	7757									
5.50	0.40		Limo argillosa debolm. sabbioso, marrone e nacciala, molto consistente:				9.37	2.00	4		
730	170		Ghicia eterometrica addensata, con clasti eterogenei, arratondati, Dimax 5 cm, Omed 2-3 cm, in abbandante matrice limoso-sabbiosa, nocciola (clasti 50-80x).				6.00 15-35-37	230			
j			Lima sebbiaso argillosa, avana can striat. nocciola								
8.30	1.00		Limo argillasa sabbioso, nocciola passante grigio, consistente.	19.00	Porell sollil		3.00	0.80			
9.40	0.70	000000	Ghiaia eterometrica, mediamente addensata, con closti Dimax 4 cm, Dimed 2 cm, în malrice limoso-sabbiosa, grigia (closti	20	Por Per		9.50 19-20-19				
10.50	0.40	050-050	70-90%).	-	11	1 1		0 0.40	2		
N.Ju	V.40		Limo argilloso sabbioso, argio, consistente. Limo con sabbia passante sabbiasa debolm, argilloso, ed argilloso, grigio.					B8,0			
11.70	120		Sabbia media limasa, ghiaiosa nella parte bassa, grigia.	-	11						1
12,10	0.40	70207020	Ghidia eterometrica con clasti eterogenei, Dmax 3 cm, Omed	1							
13.70	160		1-2 cm, in matrice limoso-sabbiosa e limoso-argillosa, grigio (clasti 70-90x).								
15.00			Limo argilloso e con argilla, debolm, sabbioso e sabbioso, avana e marrone, da consistente a molto consistente.	1450 MSG	Pareli solliii		O 14.30 2.70	O 4.30			
-4.46							o 15.60 130	0 15,76	2		
17. K)	3.40						O 15,70				

AREZZO - Via Calamendrei, 265/A - Tel. 0575/33544 - Fax 0575/23230 -

SONDAGGI GEOGNOSTICI PROVE PENETROMETRICHE STATICHE PROVE CON PUNTA ELETTRICA PROVE CON PIEZOCONO PROVE DLATOMETRICHE MICROPALI

ERFO	RAZIO	E: Regione U NE: S24	QUOTA BOCCAFORO (m s.im.):	LUNGHEZZA (m): 35	_	_	di Costello INAZIONE (St	ALA (RAFICA:	1:10	00
					CALIF	TURKH .	DEDOCMBIAL					-	-
(E)			STRATIGRAFI				PERCENTUALI DI	(m)	e VT	S E	3 7	8	0
dal p.c. (m	Potenza (m)	Símbolo grafíca	Descrizione litologio		Profondilà di prefevo (m)	Compionalore Tipo di prellevo	CAROTAGGK	O PT	O ST	DAMETRO DEL FORD (mm	METODO	PERF CRAZIONE	METODO DI
			Argilla con limo avana e grigia, consistent	te.	1	M		O 17.80 2.50					
18.10	100		Limo argillosa, grigia, sabbiaso nella parte	bassa consistente.				230				- [
		==	Citio digitosof grigor, assesses rises person		r II								
		===			n B			2.70				П	
19.60	1.50	三三		AND THE RESERVE	(A 1)			2,10				Ш	
Gare	120		Limo sabbioso argilloso, grigio, Possaggio	(20,5-20.7m) di							1	ч	
	100	44-44	sabbia fine con lima.				1						
	1					П							
21.00	1.40		Argilla con limo debolm. sasbiosa, grigia,	consistente.		61	1	0 2120	O 21.20			П	
21,50	0.50		Limo sabbioso e con sabbia, debolm, argi	C. Commission of the Commissio				2.10	1,04				
72.00	0.50	1553	passaggi centim di sabbia con limo.		Jan.	=		1119					
			Limo con argilla debolm, sabbioso, grigio,	consistente, con	7 22.50	Pereli sollif		0.74					
		==	passaggi di argilla con lime.		T 2	de la		0 23.00					
	1				1 ~			220					
		==				W							
		==										- 1	
		==				Ш			0 24.50			- 1	
NE NO		=				Ш		2.30	1.08				
25.00						Ш					k .	- 1	
25.70	3.70	==			2.1	и		1.00	3 = =		K i		
			Argillo con limo e limosa, grigia, consister	nte, can rari				3,10	0 76.00				
			passaggi centim. di limo con argilla.					July	1.00			- 4	
						ш						- 1	
									-				
	1							0 27.80	0 27.80				
						l I		320	1.56				
						Ш				Y	l/		
						Ш		1			n		
	1					11		O 29.30	O 29.30				
						ш		2.70	179				
30.20	4.50					I I		100		1			
30.21	Z. Ting's		Limo con orgilla passante ed argilla con l	limo, grigi, consistenti.		11		9464	70.00				ole
						Ш		2.40	0 30.80			N	Tubi di rivestimento
		7				Ш	0.10	2015	100			5	9 8
						Ш		1200					
1		-				Ш		2.20				- 1	
		==	1					1	0 32.70				
									1.16				
								100			100		
76.00		==						2.40			Con Serie		
34.00	1		Sabbia medio-fine con limo, grigia, con g	possaggi centim, di				-			Relegione con carolies sem- oke o secco		
34.50	0.50		imo sobbiaso argilloso. Presenti frammen	iti canchiliari, Dmax				4 2124	2 7100		rote		
35.00	0.50) -	1 cm. Argilla limosa debolm, sabbiosa, grigia, co liveto sabbioso tra 34.7-34.8m.	nsistente. Presente				3.00	140	10	02 V 3		

		ott. R.	Nazionale (AFFAELE F :, Albo N, 27	OTIL			CANTIERE CITTA' DI CASTELLO V.MARTIRI SONDAGGIO SA	DEUML	BERT	y Siste	ema Rota zic	NE
Diametro del foro mm.	Spessore strati mt.	Profondita' dal p.c. mt.	Litologia	Pocket Penetrom. R.P. Kg/cm²	Campioni Indisturbati	Camploni Rimaneggiati	Descrizione dei terreni attraversati		Faida	S, P, T. Numero Colpi N'	Percentuale Carotaggio %	Osserva
100	1.80		\$ 6 000				LINO-AREILLOSO RINANESSIATO CON CIETTOL E LATERIEL VARI					
	360	2.00 4.00					LINO-ARFILLE CO MARRENT CON SABBIA DIFFUSA- PLASTICO.			W1=4		
		6.00		1.0						490 N1 = 3 N3 = 4		
	14.20	8.00					ARBILLA-SILTOSA GRIEID-AZZO RRA COMPATTA.					
		1210		40				3		1 N = 13 1 N = 22 1 N ≤ 28	S	
		(4.00	三	4,5								
	2.30	12:00					GHIAIN-SABBIOSA AQUIFERA					
	1.70	20.00		4,5			ARBILLA - SILTOSA AZZVERA COMPATTA					
											-	
							1.1					1

STUDIO GEOLOGICO º6

COMMITTENTE: I . LUCACCIONI CANTIERE Sitta'di Castello

SONDAGGIO: SE

DOTE ROTILI RAFFAELE

IN MT	LITOLOGIA	FALDA	CAMPIONI	DESCRIZIONE DEI TERRENI ATTRAVERSALI	PENETROM RP RCICM	VANE 1EST
0	0.0000			Sabbia-ghiaiosa acquifera.		
The same of				Argille-limose bleu' poco consistenti friabili.	R.P. 2.00	
Personal Income of the Second				Argille-limose bleu consistenti che diventano sempre piu compatte verso il basso e piu siltose. Da circa m.15.00 il colore delle argille da bleu diventa grigio scuro.	R.P. 3.50	
· Market	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			Livello argillo-sabbioso con ciotto= lini calcarei.	R.P. f.s.	

S'TUDIO GEOLOGICO

DOTT ROTILI RAFFAELE

COMMITTENTET LUCACCIONI

CANTIERE :Citta' di Bastello

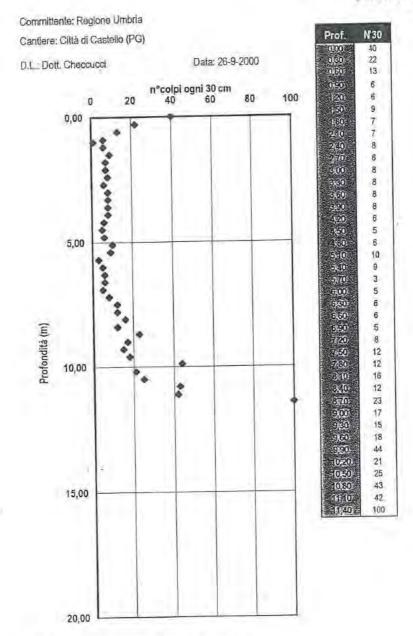
SONDAGGIO: 52

TOLOGIA	PAIDA	CAMPIONI	DESCRIZIONE DEI TERRENI ATTRAVERSATI	POKET PENETROM RP KG/CM	VAME TEST
			Sabbia-ghiaiosa acquifera.	m.0.70 S.P.T. N 15=9 30=7 45=11	
		1-	Argille-limose bleu' poco consistenti friabili.	m.4.80	
				30=19 45=23	
			Argille-limose bleu' che diventano sempre piu' compatte e siltose procedendo verso il basso.		
		11 -	Da m.15.50 fino a 17.00 m. diventano di colore grigio scuro.	m.10.80 N.15=13 30=28	
				45=17	
				,	
	0.000	0.000		Sabbia-ghiaiosa acquifera. Sabbia-ghiaiosa acquifera. Argille-limose bleu' poco consistenti friabili. Argille-limose bleu' che diventano sempre piu' compatte e siltose procedendo verso il basso. Da m.15.50 fino a 17.00 m. diventano di colore grigio scuro.	Sabbia-ghiaiosa acquifera. Sabbia-ghiaiosa acquifera. M. 15=9 30=7 45=11 Argille-limose bleu' poco consistenti friabili. M. 4.80 N. 15=9 30=19 45=23 Argille-limose bleu' che diventano sempre piu' compatte e siltose procedendo verso il basso. Da m. 25.50 fino a 17.00 m. diventano di colore grigio scuro. m. 10.80 N. 15=13 30=28

			SPT
COMMIT	CON	UNE DI CITTA DI CASTELLO	
QUOTA LI	TOLOGIA FALDA	DESCRIZIONE	
2.40		LIMI ARGILLOSI MARRONI, COMPATTI PLASTICI. SABBIE LIMOSE GIALLASTRE ADDENSATE SATURE.	
5.00		ARGILLE LIMOSE GRIGIO AZZURRE PLASTICHE ED UMIDE NEL PRIMO METRO POI SONO SEMPRE PIU COMPATTE E SABBIOSE	
10.10	===	A M. 6.70 S.P.T. N= 5-10-16	

A	D		SONDAGGIO Nº 2	LOCALITA' S	2. U. (HUB CAS	PRAN	L VVA	
	GEO	3)))\ L	COMMITTENTE Dr.		-16	MOTA (51	_		
			TOPO						
PROFO		STRATI- GRAFIA	DESCRIZIONE		× CAR.	LIUKLLO FALDA	INDIAM P	PROUE PKT SPI	
1 2			limo argilloso di color beige	- sabbioso			S n	3.5 4.6 4.5	
3	2,85		sabbia medio-fi beige addensata					5.6	
5	4.10		ghiala in matri	ce sabbiosa					
6	6.05	2.0.0.0.	sabbia medio-fi beige grigio	ne di colore					
8			limo argilloso- grigio-blu pla	sabbioso stico					
9	8.78	2000	argilla grigio	-blű			重		
18	9,88		limo argillo-sa	abbioso			П	2	
11	10.5							11 14	
12									
14			limo argilloso grigio-blu con intercalati sottili livelli sabbiosi						
15									
16									

PROFONDITA' DA P.C. (m)		STRATI-	DESCRIZIONE	X CAR.	LIUELLO	INOI	PROUE	
		CRAFIA	DESCRIPTION		FALDA	CAMP	PKT	SPT
17 18 19 20	20.3		limo argilloso grigio-blu					
	20.5							


Committente Cassa di rispar	mio di Città di	Costello	Data 1/3/78	stemo di foro o ro	nzione	., <u>.</u>	
Contiere Città di Costello	AGGIO O DE E	RATIGRAFIA B	DESCRIZIONE DEI TERRENI	4	-	, e t	Vane
5.40 5.40 5.40 7.00 6.50 7.00 6.50 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	10- 10- 11- 12- 13- 15- 15- 15- 15- 15- 15- 15- 15- 15- 15		imo argilloso marrone giallast entuali sabbiose e pigmentari in abbondante negli ultimi 50 molto consistente negli ultimi 50 molto e ghiaia con Ø variab cin', a matrice sabbiosa-argilli debolmente ce sabbia medio-grossa e ghiaie t gillose giallo rossastre. Si ciottoli e ghiaia con Ø max di trice sabbiosa e qualche lente sa, talora anche debolmente ce sabciosa e gualche lente sa, talora anche debolmente ce sabciosa argillosa Argilla grigio-azzurra scarsa grumi calcarei. Da quota 19,60 si presenta co	one carboniosa, cm. Da consistente ni metri ile da 5 mm. a 20 osa. Si presentano mentati. alora con lenti ar- da 5 cm., con ma- mentati. cm. a 15 cm. con ma- mentata.	2,8	04/01 07	OCITE AFE TO THE SOL
2280 B.00 B.60 B.	16- 17- 18- 19- 20- 21- 21- 21- 21- 21- 21- 21- 21- 21- 21		fini fino a quota 20,70. La presenza di livelli sabbii verso il basso. Sabbia grossa grigio azzurra Sabbia medio fine grigio-az argillosa e lenti di argili Sabbia media e grossa con o finale ciottolo verso il Ciottoli e ghiaia con Ø var cm. a matrice sabbioso-argi	a commatta a commatta a commatrice a comm		00'U B	1,6

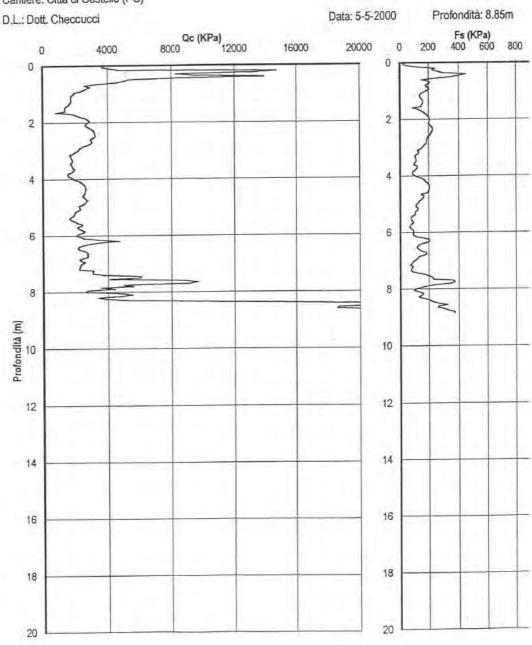
SOILTEST

Via A. Grandi, 39 Arezzo Tel. 0575/323644 fax 23230

Prova Penetrometrica Dinamica Continua tipo DPSH

Prova: PD21

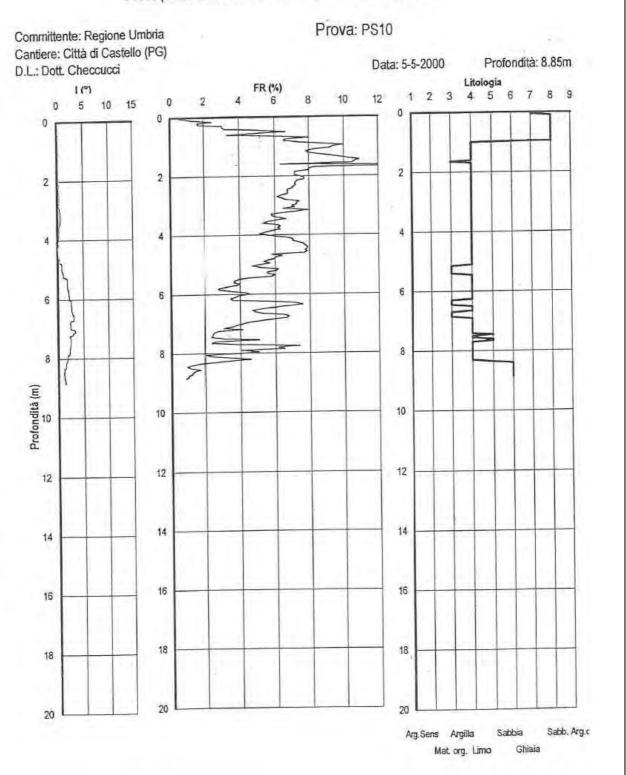
Prova eseguita con penetrometro Pagani TG 73 - 190 KN Penetrometro dinamico superpesante tipo ISSMFE Maglio 63,5 Kg - Volata 75 cm


SOILJEST"-

Via A. Grandi, 39 Arezzo Tel. 0575/323644 fax 23230

Prova penetrometrica statica con punta elettrica (CPTE)

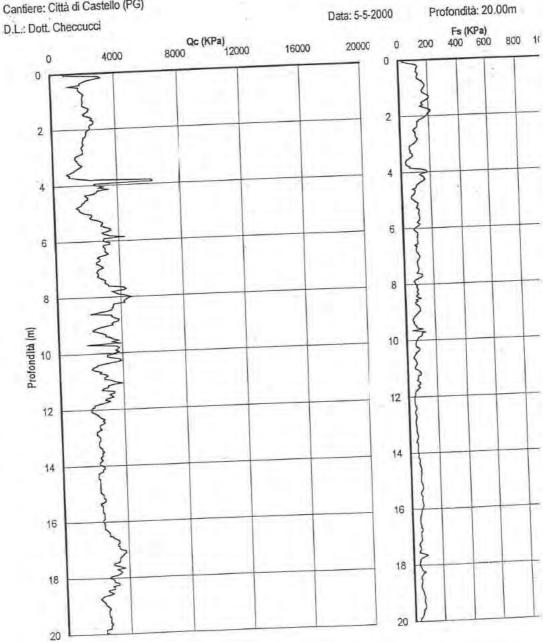
Committente: Regione Umbria Prova: PS10


Cantiere: Città di Castello (PG)

SOILJEST

Via A. Grandi, 39 Arezzo Tel. 0575/323644 fax 23230

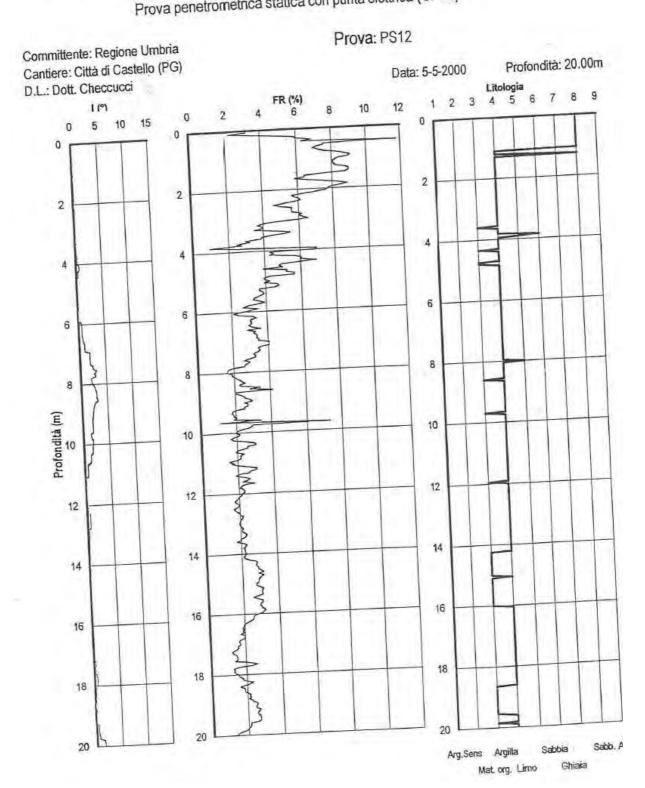
Prova penetrometrica statica con punta elettrica (CPTE)



SOILJEST

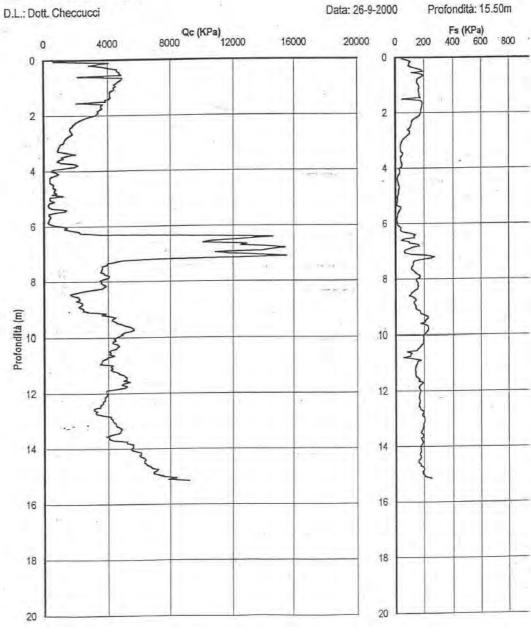
Via A. Grandi, 39 Arezzo Tel. 0575/323644 fax 23230

Prova penetrometrica statica con punta elettrica (CPTE)


Committente: Regione Umbria Cantiere: Città di Castello (PG) Prova: PS12

Via A. Grandi, 39 Arezzo Tel. 0575/323644 fax 23230

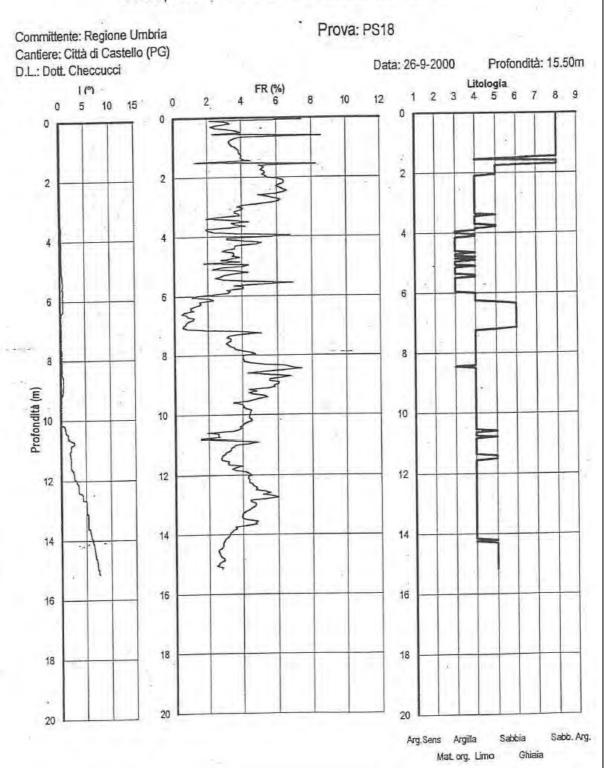
Prova penetrometrica statica con punta elettrica (CFTE)



Via A. Grandi, 39 Arezzo Tel. 0575/323644 fax 23230

Prova penetrometrica statica con punta elettrica (CPTE)

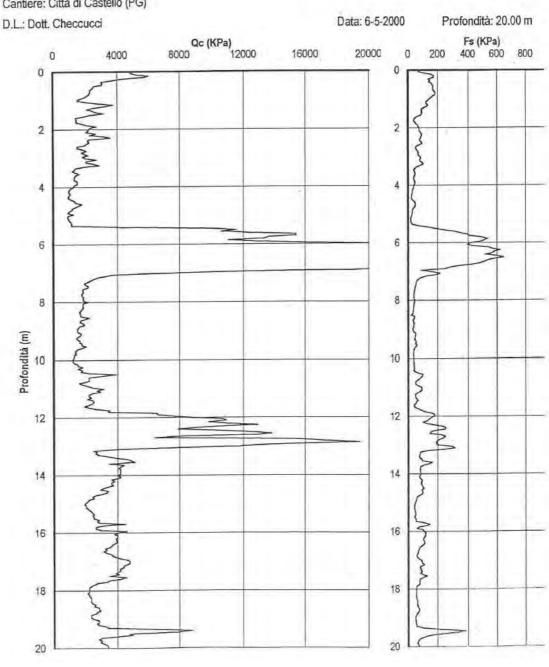
Committente: Regione Umbria Cantiere: Città di Castello (PG)


Prova: PS18

SOILTEST

Via A. Grandi, 39 Arezzo Tel. 0575/323644 fax 23230

Prova penetrometrica statica con punta elettrica (CPTE)

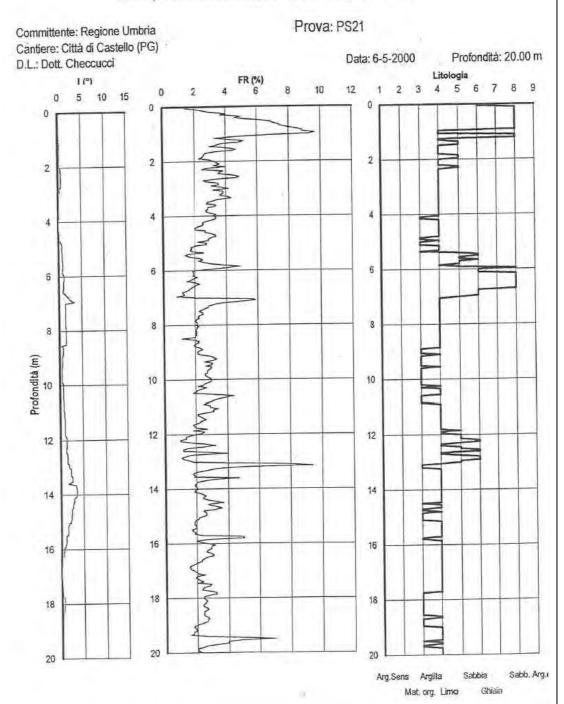

1 s.r.l. == SOILJES

Via A. Grandi, 39 Arezzo Tel. 0575/323644 fax 23230

Prova penetrometrica statica con punta elettrica (CPTE)

Prova: PS21 Committente: Regione Umbria

Cantiere: Città di Castello (PG)



SOIL_TEST

secondo Rolados

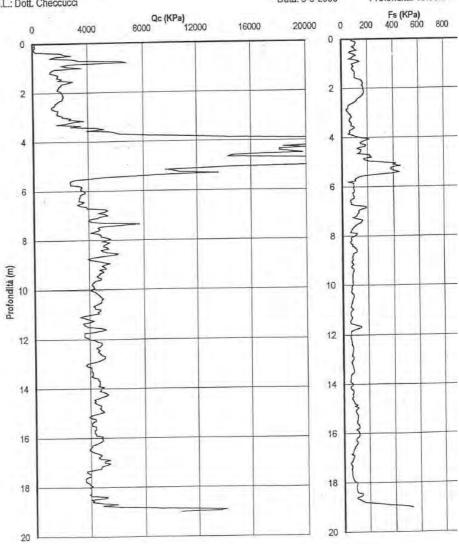
Via A. Grandi, 39 Arezzo Tel. 0575/323644 fax 23230

Prova penetrometrica statica con punta elettrica (CPTE)

CPTE5

SOILTEST

Via A. Grandi, 39 Arezzo Tel. 0575/323644 fax 23230


Prova penetrometrica statica con punta elettrica (CPTE)

Committente: Regione Umbria Cantiere: Città di Castello (PG) Prova: PS11

D.L.: Dott. Checcucci

Data: 5-5-2000

Profondità: 19.00m

SOILTEST

Via A. Grandi, 39 Arezzo Tel. 0575/323644 fax 23230

Prova penetrometrica statica con punta elettrica (CPTE)

MICROZONAZIONE TRESTINA

S1 S2 S3 SI \$3 \$2 Da 0.0 m a 2.0 m Ilml e Ilmi sabbiosi Da 0.0 m a 3.5 m limi e limi sabbiosi 1 m 1 m Da 0.0 m a 4.2 m limi e limi sabbiosi 2 m 2 m 2 m 3 m 3 m 3 m 4 m 4 m 4 m 5 m Ba 2:0 m a 15:0 m gniale, ghialetto, e sabble con orizzonii ta ora prevalentemente sabblo-limasi 6 m 6 m 6 m Da 3.5 m a 14.0 m ghicie, ghicietto e sabble con orizzonti talora prevalentemente sabblo-limosi 7 m 7.m Da 4.2 m a 14.0 m ghicie, ghicietto e sabble con orizzonti talora prevalentemente sabbio-limosi 8 m 9 m 9 m 9 m 10 m 10 m 10 m 11 m 11 m 11 m 12 m 12 m 12 m da 12.8 m a 13.2 m livello sbbioso in matrice argillosa 13 m 13 m 14 m 14 m 14 m Da 15.0 m a 19.7 m sabble da medio a fini in matrice argillosa 15 m 16 m Da 14.0 m a 18.3 m sabble da medio a fini 16 m 16 m Da 14.0 m a 18.5 m sabbie da medio a fini In matrice argillosa 17 m in matrice argillosa 18 m 18 m 18 m Da 18,3 m a fine sondaggio (20 m) limi argillosi con intercalazioni di arizzonti sabblo-sitosi pa 19.7 m a fine sondaggio (20 m) limi argillosi con intercalazioni di arizzonti sabbio-siltosi Da 18.5 m a fine sondoggio Ilmi argillosi con intercalazioni di orizzonti sabbio-siltosi 19 m 19 m 19 m

20 m

20 m

, MEN	e-mail:fbecattin/€gr	suprobling it - sito internet: www.gepprobling.it
nte: Don 6	Geol-Partoela Polis-	Spire DPS+1.
Traser av E	ida di Castello PGI	
20 dano 260	7. Atterzaulus e	
14 9 19 19 19		
The service of the	Tobulate	dalla prova
	appiate	ruena prova
longilis amit	r COIDEOS, A COMEAN COM	Solor del 11 Millor directivo 11 Nicolor del 11
		radioannia rice valentia rice internacione comento
0,2	11	38
0.8	18	24
0,8	- 8	12
1	- 6	0
1/2	4	- B
1,4	4	6
1,8	5	6 8
2	6	1
2,2	6	. 9
2,4	6	9
2,8	6 6	9
9	4 "	5
3.2	4	5 -
3,4	4	8
3,6	4	
4	4	6
4,2	4	1 6
44	4	8
4,8	4	8
4,8	8 1	4
5,2	2	2 3
5,4	2	3 1
5,8	2	3
material and the second	4	6
6 6.2	5 1	8
8.4	- a -	8 8
6,6		8
ă.8 —	, in direction	9 1
7		8
7.2	S 8	8
7,5	5	8
7.8		8
9	4	6
8	make a second and the	The state of the s

Geo Probing di Francesca Becattini
Sede: Str. Perugia - Pante Valleceppi, 96 - 06135 Ponte Valleceppi (PG)
Cell. 347.6434222 - Tel e Fax: 075.5928321
e-mail:f.becattini@geoprobing.it - sito internet: www.geoprobing.it

Profondità (m) 8,8	M=colprdella punta misurato	N-Golpr del N-Golpr del (Ivestimento	and the second of the second	The second secon
	3			
. 9	4		8	
9,2	2		3	
9,4	3		4	
9,6	4		6	
9,8	16		24	
10	20		30	<u> </u>
10,2	16		24	
10,4	13		20	
10,6	15			<u> </u>
10,8	26		22	
	. 20		. 39	
11,2	6		30	0 0
11,4	6		9	25 (90) - 25 (3
11,6	7		9	
	15		10	POSTO MANO
12	15		22	
12,2	10		22	
12,4	13		15	
12,6	12		20	es de Anoles
12,8	10		18	
13	7		15	
13,2			10	
	<u> </u>		12	

CPT1 CPT2 CPT3 CPT4 P2 P3 -CPT 37 CPT4 ----- DPSH 94-02 100 ... 200 200 300 3 -OPSH 94-03 **P3** -CPT 162-02 CPT4 200 300

Viale	Unità d'		IDR	. ALFRE	DO						F	Niferimento: 8-0	17GM1
				/A PEN LLE VA						MICA		n°	
- ca - la	dagine intiere calità ote :		Cimit	eol. Matted ero di Tresi ina - PG		e Ni					a inizio : falda :	27/08/2007 piano campa Falda non rile 1	gna Wata
Prof	(m)	N(calp	i·p)	Rpd(kg/c	m²) N	(colpi r)	asta	Prof	.(m)	N(colpi p)	Rpd(kg/c	om²) N(colpi r) ast
20 - 10 - 30 - 30 - 20 - 30 -	0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,20 2,20 2,40 2,60 2,80 3,00 3,20 3,40	2 4 7 10 12 15 14 8 9 7 7 12 4 4 4 4 3		21,0 38,6 67,5 96,4 115,7 144,7 124,8 71,3 90,2 62,4 62,4 99,4 33,1 33,1 33,1 33,1			1222233333444445	3,40 - 3,60 - 4,00 - 4,20 - 4,40 - 4,60 - 4,80 - 5,00 - 5,40 - 5,60 - 5,80 - 6,00 - 6,20 - 6,40 -	3,60 3,80 4,00 4,20 4,40 4,60 4,80 5,00 5,20 5,40 5,60 6,00 6,20 6,40 6,60	4 7 5 8 12 18 13 12 14 17 19 15 19 31 32 50	30,9 54,1 38,7 61,9 87,1 130,6 94,3 87,1 101,6 116,2 129,8 102,5 129,8 211,9 206,7 322,9		5555666667777788

BARTOC Viale Unità d'I 06019 Umbert		L ALF	REDO	N					A	iferimento: 8-0	7GM2
	PRO\ TABE	VA F	VALC	ROME RIDIF	TRIC	CA DIN. STENZA	AMI A	CA		n°	3
- indagine - cantiere - località - note :	Dr. C	Geol. M	atteo Gab Trestina					- data : - quota - prof. - pagin	inizio : falda :	27/08/2007 plano campag Falda non rile 1	
Prof.(m)	N(colpi p)	Rpd(kg/cm²)	N(calpi r)	asta	Prof.(m) /	l(calpi p)	Rpd(kg/	cm²) N(colpi r) asta
00 - 0,20 20 - 0,40 40 - 0,60 60 - 0,80 80 - 1,00 00 - 1,20 20 - 1,40 40 - 1,60 60 - 1,80 80 - 2,00 00 - 2,20 20 - 2,40 40 - 2,60 60 - 2,80 80 - 3,00	3	66 66 42 22 22 23 33 44	1,5 7,5 7,5 7,5 8,9 86,7 86,7 85,6 11,4 19,7 13,1		1222223333344444	3,00 - 3,2 3,20 - 3,4 3,40 - 3,6 3,60 - 3,8 4,00 - 4,2 4,20 - 4,4 4,40 - 4,4 4,60 - 4,8 4,80 - 5,5 5,00 - 5,5 5,40 - 5,5 5,60 - 5,5	00 00 00 00 00 00 00 00 00 00 00 00	10 15 8 11 9 13 17 14 14 17 27 32 31 40 50	82,8 116,0 61,9 85,1 69,6 100,6 123,4 101,6 123,4 195,9 218,7 211,9 273,4 341,7		455555666667777

..... Othanara - Geom, Morbidelli

Località: Trestina

Note:

Penetrometro: statico 20 t

Sigla: P5

Profondità (m)	Resistenza punta (kg)	Res.punta + laterale (kg)	gc (kg/cmq)	fs (kg/cma)	Rapporto
0,4	21"	54	21	T.	· rapporto c
0,6	42	76	42	2,27	9
0,8	49	68	49	1,27	33
1	52	95	52	2,87	17
1,2	48	90		2,8	19
1,4	76	125	48	3,27	15
1,6	67	140	76	4,87	16
1,8	32	116	67	5,6	12
. 2	39	82	32	2,87	11
2,2	45	110	39	4,33	9
2,4	45	107	45	4,13	11
2,6	41	94	45	3,53	13
2,8	37	75	41	2,53	16
3	97	135	37	2,53	15
3,2	82	124	97	2,8	35
3,4	46		82	3,47	24
3,6	206	98	46	5,53	8
3,8	229	289	206	4,33	48
4	275	294	229	4,67	49
4,2	399	345	275	5,13	1
4,4	476	476	399	4,2	54
4,6	4	539	476	3,73	95
4,8	396	452	396	6,07	128
5		471	380	7,2	65
5,2	344	452	344	4,07	53
5,4	325	386	325	3,87	85
5,6	167	225	167	4,13	84
5,8	195	257	195	4,87	40
6	349	422	349		40
6,2	298	366	298	4,53	77
6,4	236	378	236	9,47	31
0,4	400	512	400	7,47	32

Committente: Geom. Chitarrai - Geom. Morbidelli

Località: Trestina

Penetrometro: statico 20 t

Note:

Sigla: P6

Profondità (m)	Resistenza punta (kg)	Res.punta + laterale (kg)	qc (kg/cmq)	fs (kg/cmq)	Rapporto qc/fs
0,4	15	35	15	1,13	1 13
0,6	43	60	43	1,4	31
0,8	49	70	49	2,47	20
1	46	83	46	2,93	16
1,2	45	89	45	3,13	14
1,4	52	99	52	3,93	13
1,6	65	124	65	5,6	12
1,8	54	138	54	4,2	13
2	42	105	42	3,73	11
2,2	40	96	40	2	20
2,4	38	68	38	1,6	24
2,6	39	63	39	1,27	31
2,8	38	57	38	2,2	17
3	32	65	32	1,6	20
3,2	38	62	38	1,87	20
3,4	36	64	36	2,33	15
3,6	59	94	59	3,6	16
3,8	199	253	199	3	66
4	198	243	198	1,2	165
4,2	236	254	236	4,8	49
4,4	285	357	285	3,87	74
4,6	288	346	288	5,4	53
4,8	140	221	140	3,27	43
5	298	347	298	1	298
5,2	229	244	229	4,13	55
5,4	324	386	324	2,33	139
5,6	188	- 223	188	2,27	83
5,8	211	245	211	1,73	122
6	45	71	45	2,07	22
6,2	120	151	120	3,47	35
6,4	194	246	194	6	32
6,6	400	490	400	- 6	67

Committente: Geom. Chitarrai - Geom. Morbidelli

Località: Trestina

Penetrometro: statico 20 t

Note:

Sigla: P文

Profondità (m)	Resistenza punta (kg)	Res.punta + laterale (kg)	qc (kg/cmq)	fs (kg/cmq)	Rapporto qc/fs
0,4	42	65	42	3,13	13
0,6	62	109	62	1,07	58
0,8	80	96	80	3,73	21
1	41	97	41	2,27	18
1,2	29	63	29	1,33	22
1,4	29	49	29	1,2	24
1,6	23	41	23	0,67	34
1,8	21	31	21	1,27	17
2	22	41	22	1,2	18
2,2	24	42	24	1,47	16
2,4	26	48	26	1,8	14
2,6	28	55	28	1,53	18
2,8	38	61	38	1,33	29
3	39	59	39	2,07	19
3,2	39	70	39	2,2	18
3,4	44	77	44	2,13	21.
3,6	39	71	39	2,07	19
3,8	32	63	32	2,07	15
4	32	63	32	1,6	20
4,2	28	52	28	3,33	8
4,4	38	88	38	2,27	17
4,6	129	163	129	3,87	33
4,8	121	179	121	3,27	37
5	272	321	272	3,87	70
5,2	284	342	284	8,87	32
5,4	345	478	345	7,47	46
5,6	311	423	311		
5,8	400		400		

Р8

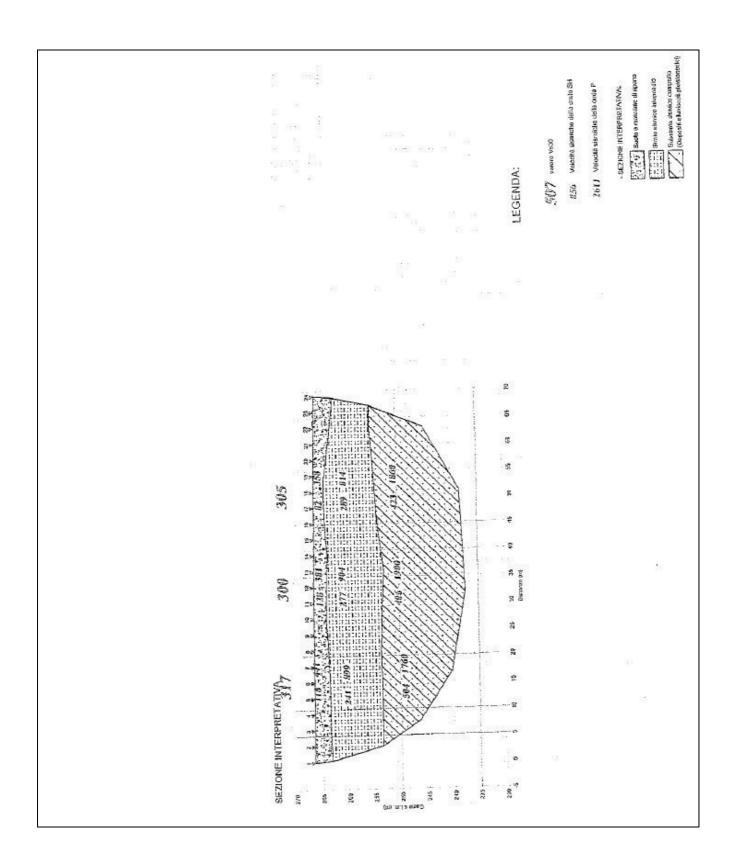
Località: Trestina

Note:

Penetrometro: statico 20 f

Sigla: P 🦅

Profondità (m)	Resistenza punta (kg)	Res.punta + laterale (kg)	qc (kg/cmq)	fs (kg/cmq)	Rapporto qc/fs
	vi 1922	. 55	35	1,47	24
0,4	43	65	43	1,33	32
0,6	47	67	47	2,27	21
0,8	54	88	54	2,87	19
100,00		89	46	2,27	20
1,2	46	80	46	3,53	13
1,4	46	120	67	3,13	21
1,6	67	90	43	3,4	13
1,8	43		43	3,2	13
2	- 43	94	48	3,93	12
2,2	48	96	51	2,73	19
2,4	51	110	47	2,93	16
2,6	47	88	54	2,87	19
2,8	54	. 98	201 1950 - M 1950 - M M	3,07	25
3	77	120	77	4,53	17
3,2	78	124	78	A STATE OF THE PARTY OF THE PAR	17
3,4	64	132	64	3,73	34
3,6	124	180	124	3,6	100
3,8	226	280	226	e 2,27	52
4	256	290	256	4,93	
4,2	274	348	274	0,8	342
4,4	386	398	386	4,13	93
4,6	378	440	378	7,33	52
4,8	350	460	350	6	58
. 5	368	458	368	4	92
5,2	320	. 380	320	6	53
5.4	400	490	400	6	67


P9

Località: Trestina Penetrometro: statico 20 t

Note: Sigla: P9

Profondità (m)	Resistenza punta (kg)	Res.punta + laterale (kg)	qc (kg/cmq)	fs (kg/cmq)	Rapporto qc/fs
0,4	44	60	44	2,27	19
0,6	64	98	64	2,87	22
0,8	44	87	44	2,67	16
1	32	72	32	1,47	22
1,2	30	52	30	2,27	13
1,4	29	63	29	2	14
1,6	28	58	28	1,33	21
1,8	24	44	· 24	1,47	16
2	26	48	26	2,27	11
2,2	30	64	30	1,87	16
2,4	28	56	28	2,53	11
2,6	32	70	32	1,47	22
2,8	40	62	40	1,2	33
3	42	60	42	1,33	32
3,2	48	68	48	1,2	40
3,4	38	56	38	1,33	29
3,6	34	54	34	0,8	42
3,8	36	48	36	1,47	24
4 .	30	52	30	1,07	28
4,2	48	64	48	0,8	60
4,4	46	58	46	2	23
4,6	130	160	130	1,87	70
4,8	. 128	156	128	0,8	160
5	248	260	248	1,33	186
5,2	280	300	280	4,67	60
5,4	400	470	400	4,67	86

Sr1

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

GEOREFERENZIAZIONE PUNTI DI INDAGINE

Localizzazione dei profili di **sismica a rifrazi**one in onde Sh e profili **masw** in onde di Love (a traccia coincidente). Il sistema di riferimento è wgs 84.

Località profili sismici	Punto A (inizio	Punto B (fine	Lungh. (m)
	profilo)	prof.)	
01-Zona Stadio	Lat.43.367010	Lat. 43.366861	96
	Long. 12.232096	Long. 12.230926	
02-Zona Palestra	Lat. 43.365301	Lat. 43.364503	96
	Long. 12.231428	Long. 12.231919	
03-zona Palestra sud	Lat. 43.364328	Lat. 43.363564	96
	Long. 12.232063	Long. 12.232530	
04-Zona centro commerciale	Lat. 43.366319	Lat. 43.365455	96
	Long. 12.235291	Long. 12.235152	
05-Zona Sud - Banchetti	Lat. 43.361385	Lat. 43.360536	96
	Long. 12.234315	Long. 12.234526	
06-Zona industriale ovest	Lat. 43.363827	Lat. 43.363434	96
	Long. 12.226444	Long. 12.225394	
07-Zona N-W (Colonnelli)	Lat. 43.371710	Lat. 43.371377	96
	Long. 12.231465	Long. 12.232557	
08-Zona Trestina est	Lat. 43.364478	Lat. 43.364304	96
	Long. 12.242696	Long. 12.243850	
09-Trestina nord – Castellaccio1	Lat. 43.372699	Lat. 43.372352	60
	Long. 12.237519	Long. 12.236944	
10-Trestina centro nuova	Lat. 43.363547	Lat. 43.364276	96
lottizzazione	Long. 12.235777	Long. 12.235184	
11-Trestina nord-est sotto	Lat. 43.371169	Lat. 43.371161	60
viadotto	Long. 12.239596	Long. 12.240332	
12- Trestina Cimitero	Lat. 43.368640	Lat. 13.367891	84
	Long. 12.230666	Long. 12.230718	
13-zona ind ovest, area	Lat. 43.367237	Lat. 43.366571	84
settentrionale	Long. 12.226746	Long. 12.226237	
14- zona ind ovest area	Lat. 43.363850	Lat. 43.363487	96
meridionale	Long. 12.228664	Long. 12.229752	
15 – trestina sud-ovest	Lat. 43.361384	Lat. 43.360586	96
	Long. 12.228277	Long. 12.227837	

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

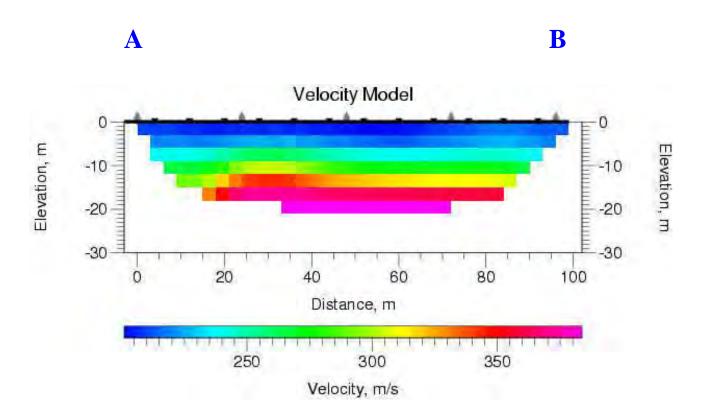
Localizzazione dei punti di indagine HVSR. Il sistema di riferimento è wgs 84

Punto di indagine HVSR	Latitudine	Longitudine
HVSR 01 stadio	43.366933	12.231505
HVSR 02 palestra1	43.364546	12.231899
HVSR 03 palestra sud	43.363569	12.232540
HVSR 04 palestra nord	43.365318	12.231558
HVSR 05 sud cimitero	43.367690	12.232551
HVSR 06 cimitero	43.368215	12.230674
HVSR 07zona ind ovest	43.366802	12.226489
HVSR 08 centro comm	43.366330	12.235306
HVSR 09 Carabinieri	43.365988	12.236704
HVSR 10 nuova lott	43.363731	12.235756
HVSR 11 auto Gaggioli	43.362195	12.237065
HVSR 12 sud trestina 1	43.360205	12.234693
HVSR 13 sud trestina 2	43.361385	12.234315
HVSR 14 Stazione treno	43.366178	12.237501
HVSR 15 Trestina SW	43.361371	12.228310
HVSR 16 Castellaccio 1	43.370862	12.235458
HVSR 17 Castellaccio 2	43.371771	12.234149
HVSR 18 sotto viadotto	43.371197	12.240110
HVSR 19 sud viadotto	43.366775	12.241248
HVSR 20 trestina est 1	43.364436	12.241778
HVSR 21 trestina est 2	43.363497	12.239533
HVSR 22 trestina sud 3	43.358657	12.236437
HVSR 23 zona ind ovest	43.363480	12.225537
HVSR 24 trestina centro	43.369818	12.236293
HVSR 25 castellaccio 3	43.371733	12.231415

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

ZONA STADIO. PROFILO SISMICO 01 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

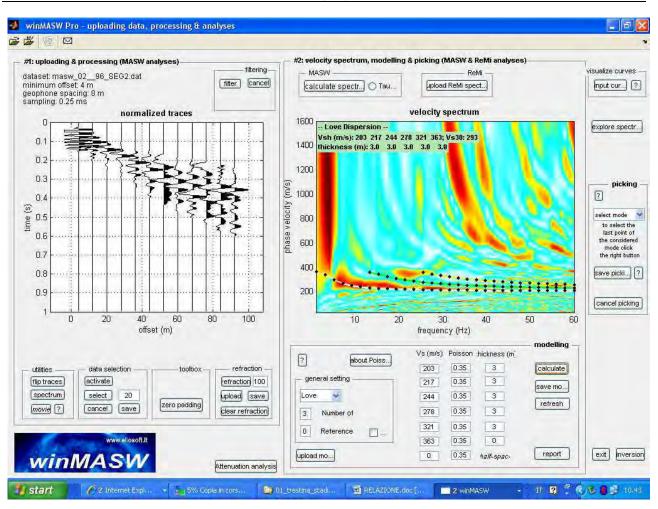


Coordinate geografiche indicative (wgs84): Punto A: Lat. 43.367010 Long. 12.232096 Punto B: Lat. 43.366861 Long. 12.230926

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

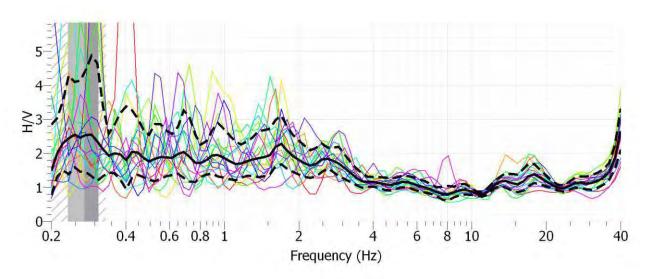
Sezione A – B: Modello di velocità (modello multistrato)



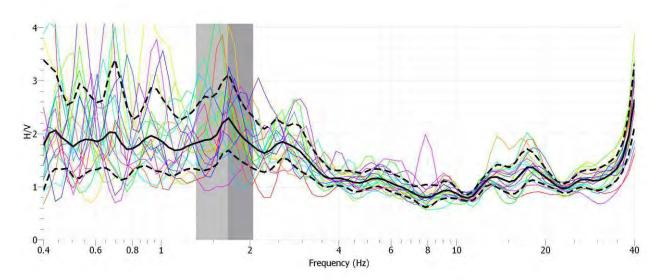
Andamento delle Vs dal p.c. al centro dello stendimento e vincoli imposti al processo di inversione HVSR.

Dist da A	Prof. (m)	Vs (m/s)
48.000000	0.00000	203.070923
48.000000	-3.000000	217.716995
48.000000	-6.000000	244.824173
48.000000	-9.000000	278.477081
48.000000	-12.000000	321.717438
48.000000	-15.000000	363.918579
48.000000	-18.000000	383.137421

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

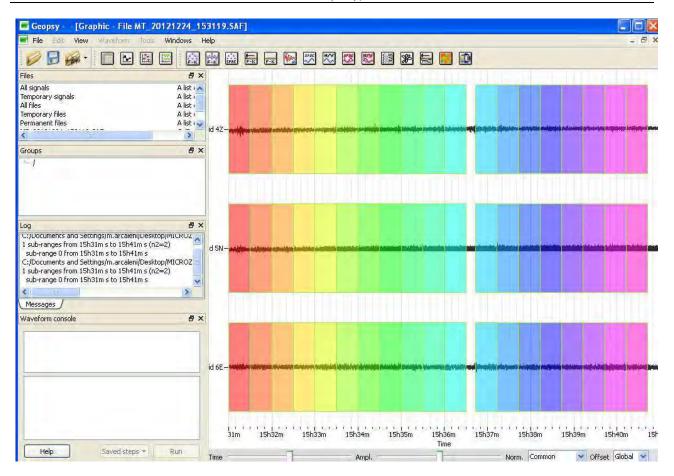

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. I dati masw si allineano ai dati tomografici.


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

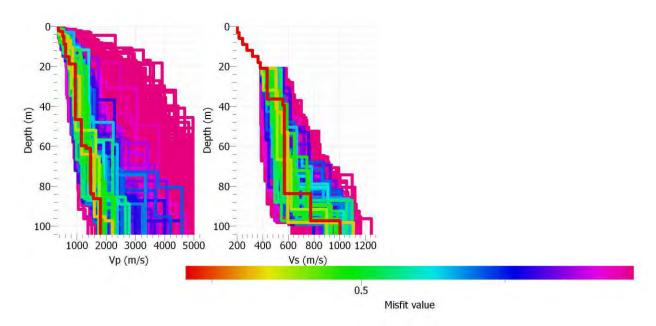
Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Analisi HVSR_01. Lo spettro non presenta picchi di particolare ampiezza. Sotto i 3 Hz il rapporto H/V si mantiene su valori dell'ordine di 2. Da 3 Hz fino ad oltre 20 il rapporto H/V è inferiore a 2 e quindi lo spettro può essere definito quasi "piatto". L'innalzamento della curva in prossimità dei 40 Hz (comunque fuori dalle frequenze di interesse ingegneristico) è associabile a rumore antropico.


Coordinate geografiche indicative (wgs84) Punto HVSR_01: Lat. 43.366933 Long. 12.231505

Analisi HVSR_01. Particolare immagine soprastante (range di frequenza compreso tra 0.4 Hz e 40 Hz).

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Registrazione sismica delle tre componenti, con le finestre prese in esame per i rapporti H/V.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Modello sismostratigrafico ricavato dell'inversione dei dati HVSR. Il modello è stato vincolato, nella porzione più superficiale, dalle Vs acquisite dall'indagine di sismica a rifrazione in onde Sh e dall'indagine Masw in onde di Love.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Profilo sismo stratigrafico 01 - Zona stadio

Modello sismostratigrafico dal p.c. fino al bedrock sismico:

Prof. sismostrato	Spessore	Vs (m(s)	Note
(m)	sismostrato (m)		
0 - 3	3	203	Rifraz + masw
3 – 6	3	217	Rifraz + masw
6-9	3	244	Rifraz + masw
9 – 12	3	278	Rifraz + masw
12 – 15	3	321	Rifraz + masw
15 – 18	3	363	Rifraz + masw
18 – 21	3	383	Rifraz + masw
21 - 36	15	435	HVSR
36 – 83	47	568	HVSR
83 – 97	14	774	HVSR
Oltre 97	-	1002	HVSR

Calcoli per la stima di VSH

VS		spessore	h/vs	H substrato		VsH
	203	3	0,014778		97	456,5782
	217	3	0,013825			
	244	3	0,012295			
	278	3	0,010791			
	321	3	0,009346			
	363	3	0,008264			
	383	3	0,007833			
	435	15	0,034483			
	568	47	0,082746			
	774	14	0,018088			

somma 0,21245

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Calcoli per la stima di VS30

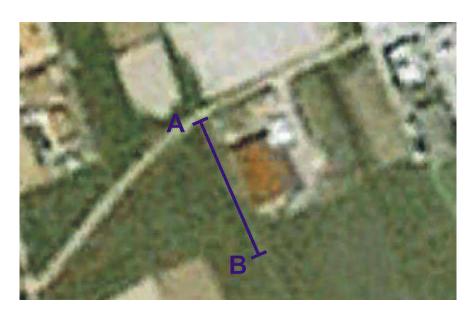
VS		h spessore	j	h/vs	H substrato		Vs30
	203	3	3	0,014778325		30	306,67801
	217	3	3	0,013824885			
	244	3	3	0,012295082			
	278	3	3	0,010791367			
	321	3	3	0,009345794			
	363	3	3	0,008264463			
	383	3	3	0,007832898			
	435	9	9	0,020689655			
		tot 30 m					

somma 0,097822469

Vs30 = 307 m/s

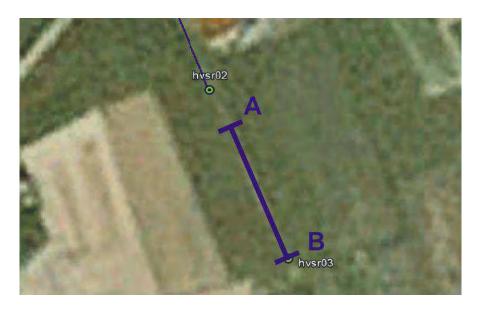
DATI RIASSUNTIVI

VSH = 457 m/s


Stima profondità bedrock sismico = 97 m

Caratteristiche modello di velocità dal p.c. fino al bedrock sismico: aumento graduale di Vs con la profondità.

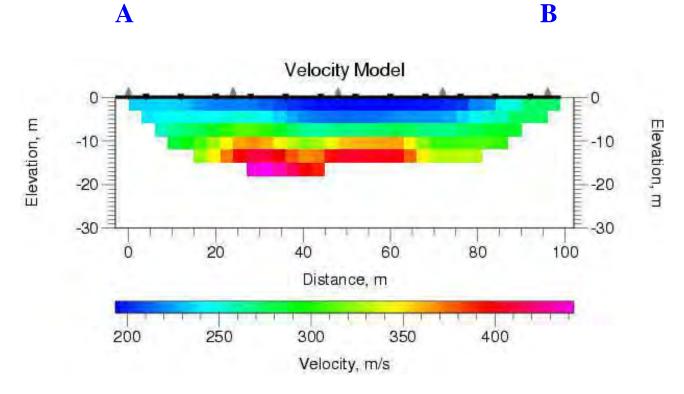
DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

ZONA PALESTRA. PROFILO SISMICO 02 e 03 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

Coordinate geografiche indicative profilo 02 (wgs84):

Punto A: Lat. 43.365301 Long. 12.231428 Punto B: Lat. 43.364503 Long. 12.231919

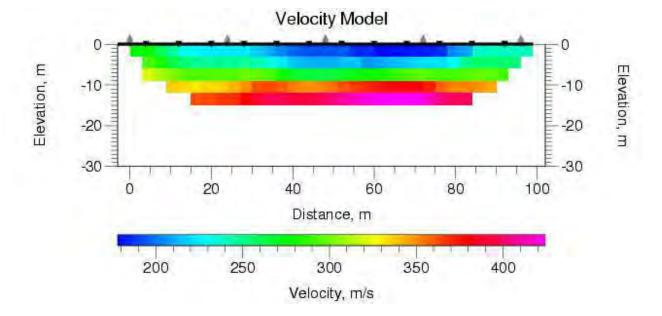

Coordinate geografiche indicative profilo 03 (wgs84):

Punto A: Lat. 43.364328 Long. 12.232063 Punto B: Lat. 43.363564 Long. 12.232530

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

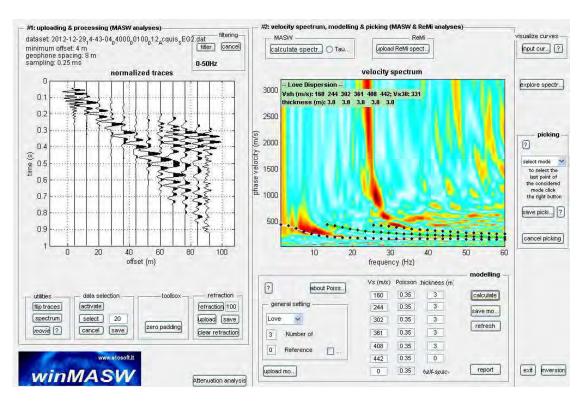
Sezione A – B: Modello di velocità (modello multistrato) profilo 02

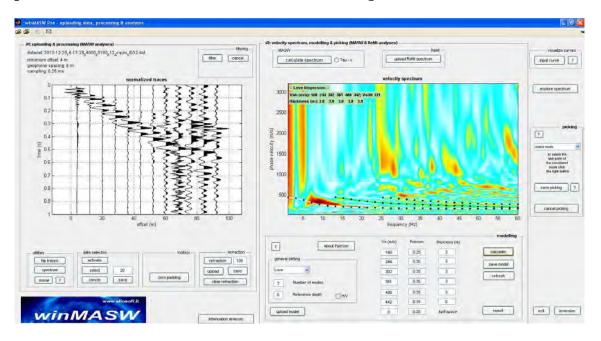

Andamento delle Vs dal p.c. a 30 M DAL PUNTO a e vincoli imposti al processo di inversione HVSR.

Dist da A	Prof. (m)	Vs (m/s)
30.000000	0.00000	195.994278
30.000000	-3.000000	243.959335
30.000000	-6.000000	302.437744
30.000000	-9.000000	361.646973
30.000000	-12.000000	408.198303
30.000000	-15,000000	442.864990

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

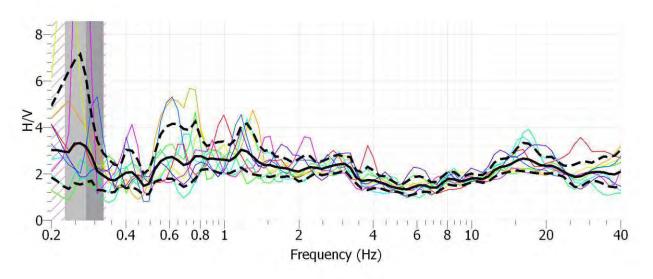
Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it


Sezione A – B: Modello di velocità (modello multistrato) profilo 03

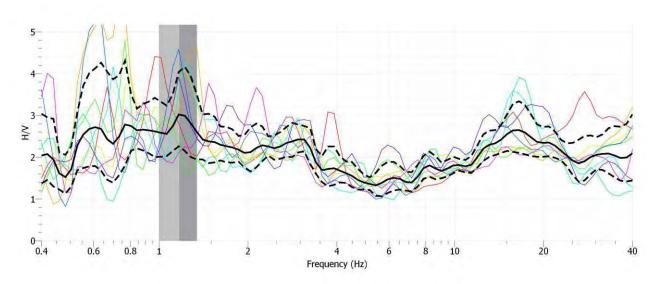

Le Vs risultano molto simili al profilo precedente, effettuato nelle immediate vicinanze. Per i vincoli in Vs relativi al processo di inversione vengono pertanto utilizzati gli stessi valori di Vs selezionati per il profilo 02.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

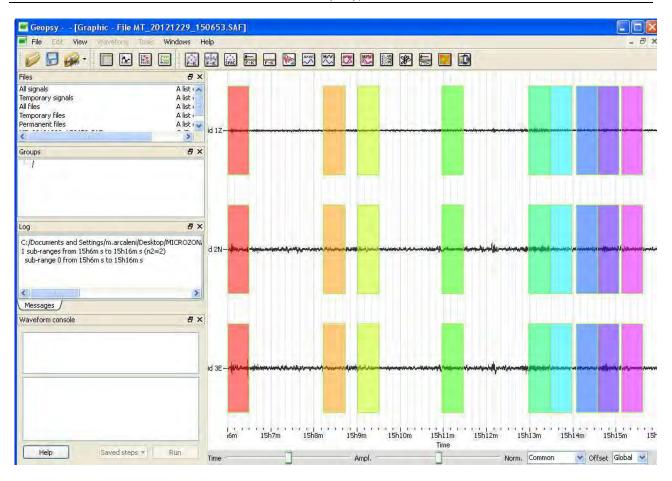

Profilo 02. Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. I dati masw, ad esclusione del primo orizzonte, si allineano ai dati tomografici.

Profilo 03. Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. I dati masw, ad esclusione del primo orizzonte, si allineano ai dati tomografici.


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Analisi HVSR_03. Lo spettro non presenta picchi "stretti" di particolare ampiezza. Tale fattore permette di ipotizzare l'assenza di importanti contrasti di rigidità. Uno dei picchi principali del grafico si trova ad una frequenza di circa 1.2 Hz ed assume un rapporto H/V di circa 3.


Coordinate geografiche indicative (wgs84) Punto HVSR_03: Lat. 43.363569 Long. 12.232540

Analisi HVSR_03. Particolare immagine soprastante (range di frequenza compreso tra 0.4 Hz e 40 Hz).

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Registrazione sismica delle tre componenti, con le finestre prese in esame per i rapporti H/V.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Modello sismostratigrafico ricavato dell'inversione dei dati HVSR. Il modello è stato vincolato, nella porzione più superficiale, dalle Vs acquisite dall'indagine di sismica a rifrazione in onde Sh e dall'indagine Masw in onde di Love.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Profilo sismostratigrafico 02 - Zona palestra

Modello sismostratigrafico dal p.c. fino al bedrock sismico:

Prof. sismostrato	Spessore	Vs (m/s)	Note
(m)	sismostrato (m)		
0 - 3	3	196	Rifraz + masw
3 – 6	3	244	Rifraz + masw
6-9	3	302	Rifraz + masw
9 – 12	3	362	Rifraz + masw
12 – 15	3	408	Rifraz + masw
15 – 18	3	443	Rifraz + masw
18 - 29	11	481	HVSR
29 – 30	1	516	HVSR
30 - 38	8	638	HVSR
38 - 52	14	681	HVSR
52 – 58	6	699	HVSR
58 - 70	12	716	HVSR
70 - 92	22	725	HVSR
92 - 98	6	985	HVSR
Oltre 98	-	1342	HVSR

Calcoli per la stima di VSH

VS		h spessore	h/vs	H substrato		VsH
:	196	3	0,015306122		92	530,13802
:	244	3	0,012295082			
3	302	3	0,009933775			
3	362	3	0,008287293			
4	408	3	0,007352941			
4	443	3	0,006772009			
4	481	11	0,022869023			
į	516	1	0,001937984			
(638	8	0,012539185			
(681	14	0,020558003			
(699	6	0,008583691			
	716	12	0,016759777			
	725	22	0,030344828			
			somma			
			0,173539713			

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Calcoli per la stima di Vs30

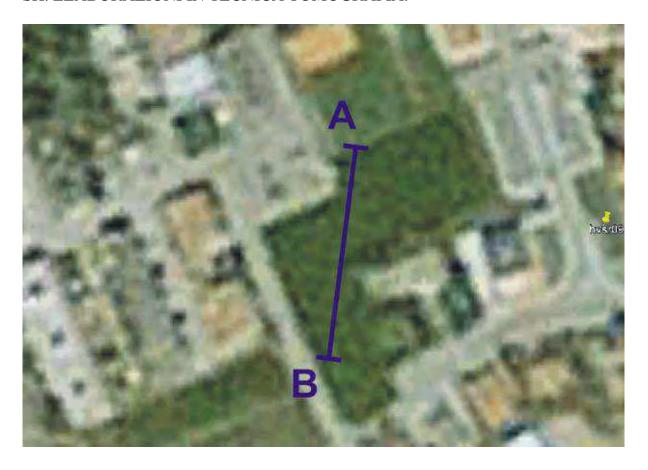
VS		h spessore	h/vs	H substrato		Vs30
	196	3	0,015306122		30	353,96464
	244	3	0,012295082			
	302	3	0,009933775			
	362	3	0,008287293			
	408	3	0,007352941			
	443	3	0,006772009			
	481	11	0,022869023			
	516	1	0,001937984			
		tot 30 m				

somma 0,08475423

Vs30 = 354 m/s

DATI RIASSUNTIVI

VSH = 530 m/s

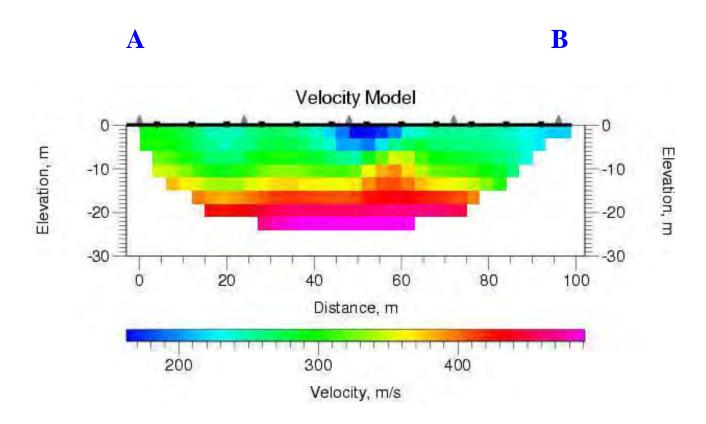

Profondità bedrock sismico = 92 m

Caratteristiche modello di velocità dal p.c. fino al bedrock sismico: aumento graduale di Vs con la profondità.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

ZONA TRESTINA CENTRO COMMERCIALE. PROFILO SISMICO 04 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

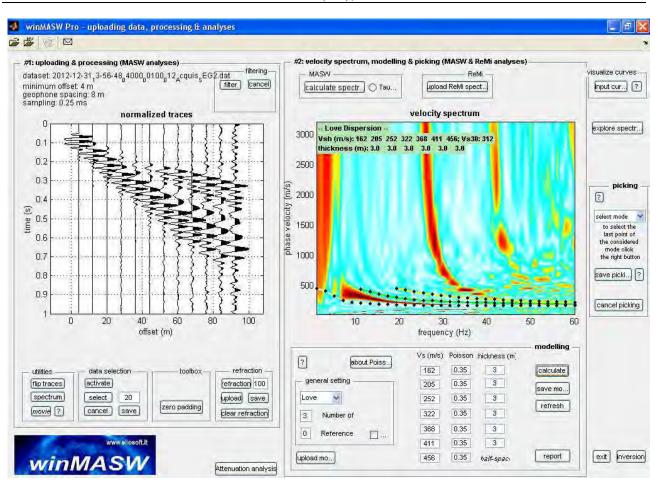


Coordinate geografiche indicative (wgs84): Punto A: Lat. 43.366319 Long. 12.235291 Punto B: Lat. 43.365455 Long. 12.235152

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

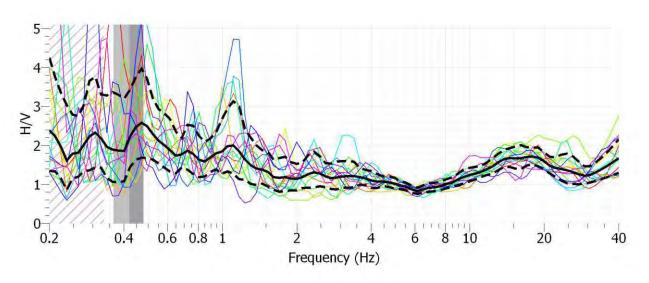
Sezione A – B: Modello di velocità (modello multistrato)



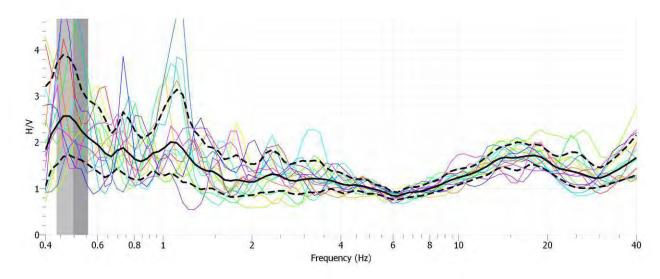
Andamento delle Vs dal p.c. al centro dello stendimento e vincoli imposti al processo di inversione HVSR.

Dist da A	Prof. (m)	Vs(m/s)
48.000000	0.00000	162.375885
48.000000	-3.000000	205.509933
48.000000	-6.000000	251.963913
48.000000	-9.000000	322.442169
48.000000	-12.000000	368.100616
48.000000	-15.000000	411.509033
48.000000	-18.000000	455.798828

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

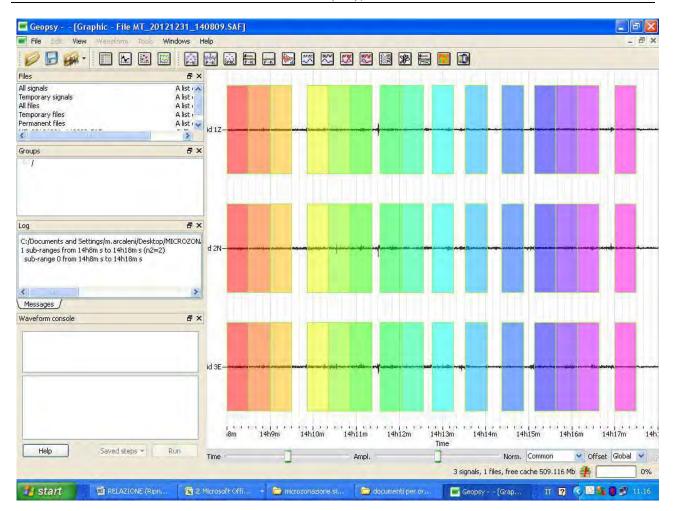

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. La curva imposta con le Vs del profilo di sismica a rifrazione risulta leggermente inferiore rispetto a quella estratta dallo spettro di velocità masw in onde di Love. Ciò è probabilmente dovuto alla presenza di leggere eteropie laterali di velocità delle onde di taglio rispetto alla verticale centrale del profilo tomografico.


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

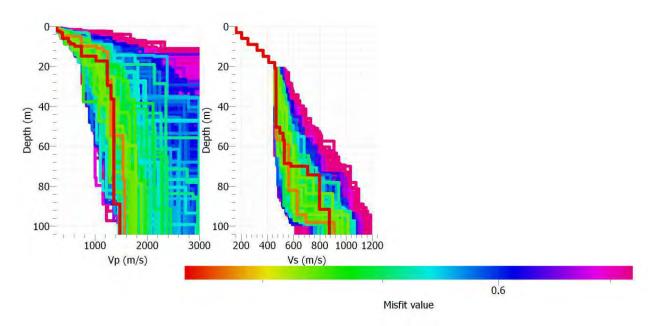
Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Analisi HVSR_08. Lo spettro non presenta picchi di particolare ampiezza. Sotto i 3 Hz il rapporto H/V si mantiene su valori dell'ordine di 2. Da 3 Hz fino ad oltre 20 il rapporto H/V è inferiore a 2 e quindi lo spettro può essere definito quasi "piatto". L'innalzamento della curva in prossimità dei 40 Hz (comunque fuori dalle frequenze di interesse ingegneristico) è associabile a rumore antropico.


Coordinate geografiche indicative (wgs84) Punto HVSR_08: Lat. 43.366330 Long. 12.235306

HVSR_08. Analisi su range di frequenza 0.4 Hz-40 Hz.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Registrazione sismica delle tre componenti, con le finestre prese in esame per i rapporti H/V.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Modello sismostratigrafico ricavato dell'inversione dei dati HVSR. Il modello è stato vincolato, nella porzione più superficiale, dalle Vs acquisite dall'indagine di sismica a rifrazione in onde Sh e dall'indagine Masw in onde di Love. Si nota che i picchi a bassa frequenza ricavati dall'indagine HVSR sono relativi a contenuti contrasti di rigidità profondi (oltre 70 m)

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Profilo sismostratigrafico 04 – Centro Commerciale

Modello sismostratigrafico dal p.c. fino al bedrock sismico:

Prof. sismostrato	Spessore	Vs (m(s)	Note
(m)	sismostrato (m)		
0 - 3	3	162	Rifraz + masw
3 – 6	3	205	Rifraz + masw
6-9	3	252	Rifraz + masw
9 – 12	3	322	Rifraz + masw
12 – 15	3	368	Rifraz + masw
15 – 18	3	411	Rifraz + masw
18 – 21	3	456	Rifraz + masw
21 – 50	29	463	HVSR
50 – 53	3	492	HVSR
53 – 56	3	514	HVSR
56 - 68	12	528	HVSR
68 - 70	2	571	HVSR
70 - 74	4	708	HVSR
74 - 91	17	794	HVSR
Oltre 91		873	HVSR

Calcoli per la stima di VSH

vs	spessore	h/vs	H substrato		VsH
162	3	0,018519		91	445,5021
205	3	0,014634			
252	. 3	0,011905			
322	. 3	0,009317			
368	3	0,008152			
411	. 3	0,007299			
456	3	0,006579			
463	29	0,062635			
492	3	0,006098			
514	3	0,005837			
528	12	0,022727			
571	. 2	0,003503			
708	3 4	0,00565			
794	17	0,021411			
	somma	0,204264			

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Calcoli per la stima di VS30

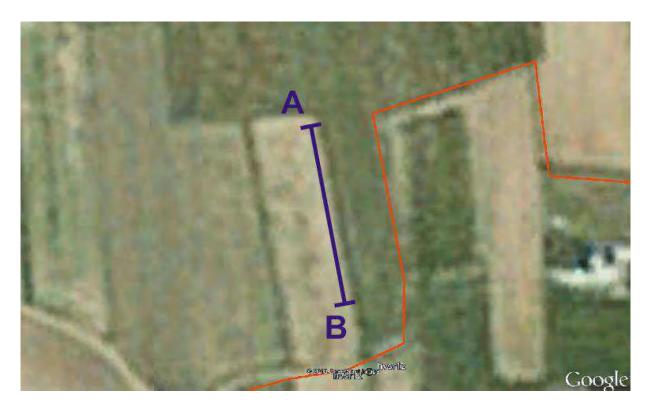
VS		h spessore		h/vs	H substrato		Vs30
	162	3	3	0,018518519		30	313,0118
	205	3	3	0,014634146			
	252	3	3	0,011904762			
	322	3	3	0,00931677			
	368	3	3	0,008152174			
	411	3	3	0,00729927			
	456	3	3	0,006578947			
	463	9)	0,019438445			
		tot 30 m					

somma 0,095843033

Vs30 = 313 m/s

DATI RIASSUNTIVI

VSH = 445 m/s


Stima profondità bedrock sismico = 91 m

Caratteristiche modello di velocità dal p.c. fino al bedrock sismico: aumento graduale di Vs con la profondità.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

ZONA TRESTINA SUD-OVEST ZONA BANCHETTI. PROFILO SISMICO 05 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

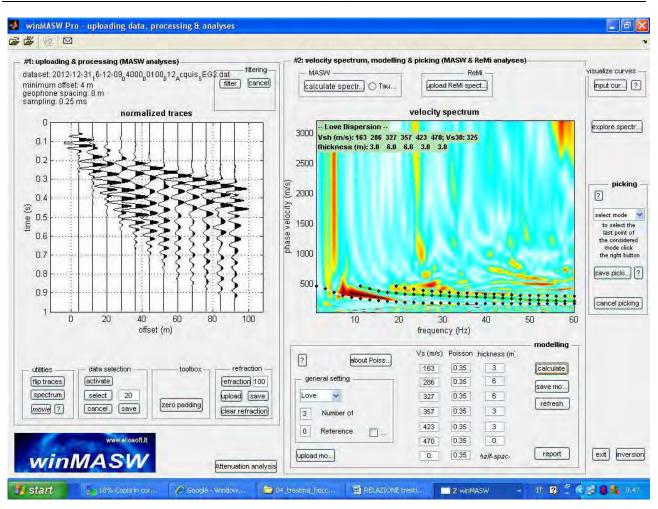


Coordinate geografiche indicative (wgs84): Punto A: Lat. 43.361385 Long. 12.234315 Punto B: Lat. 43.360536 Long. 12.234526

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

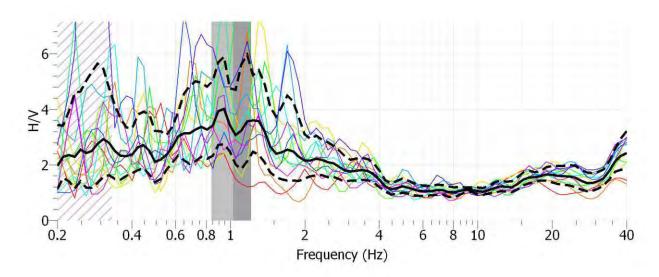
Sezione A – B: Modello di velocità (modello multistrato)

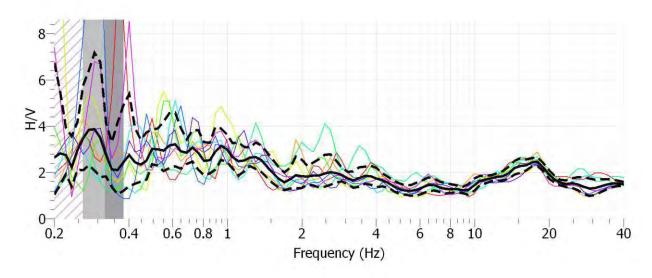


Andamento delle Vs dal p.c. al centro dello stendimento e vincoli imposti al processo di inversione HVSR.

Dist da A	Prof. (m)	Vs (m/s)
48.000000	0.00000	163.508636
48.000000	-3.000000	206.508224
48.000000	-6.000000	285.814301
48.000000	-9.000000	326.930817
48.000000	-12.000000	326.930817
48.000000	-15.000000	357.224335
48.000000	-18.000000	423.485596
48.000000	-21.000000	469.790161

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

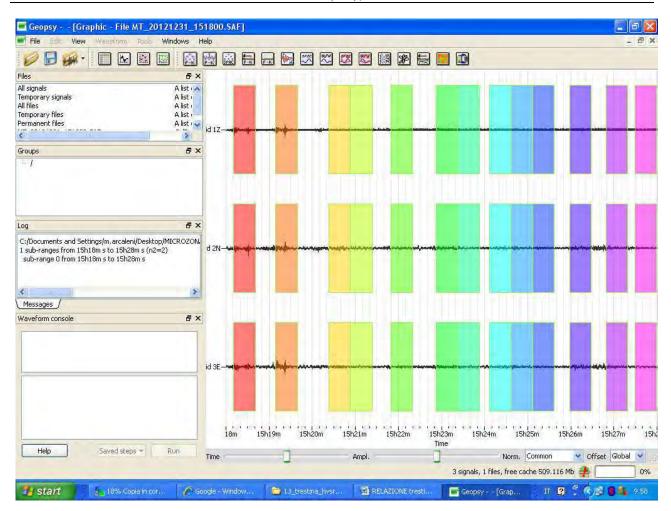

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it


Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. La curva imposta si allinea a quella estratta dallo spettro di velocità masw in onde di Love. Le leggere differenze tra le due curve possono essere dovute a contenute eteropie laterali di Vs.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

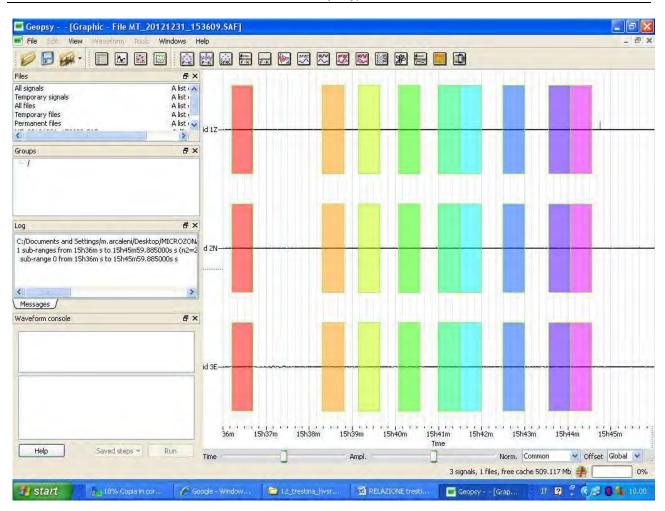
Analisi HVSR_12. Lo spettro presenta un picco principale a circa 1 Hz, al quale corrisponde un rapporto H/V di circa 4.



Analisi HVSR_13. Lo spettro presenta i picchi maggiori a bassi valori di frequenza (sotto 1.5 Hz). Ciò è associato al fatto che i contrasti di rigidità risultano essere profondi.

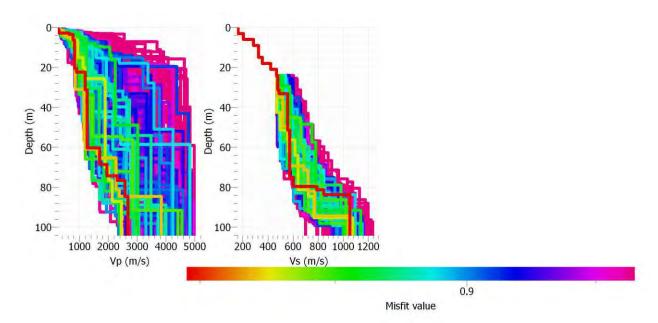
Coordinate geografiche indicative (wgs84) Punto HVSR_12: Lat. 43.360205 Long. 12.234693 Coordinate geografiche indicative (wgs84) Punto HVSR_13: Lat. 43.361385 Long. 12.234315

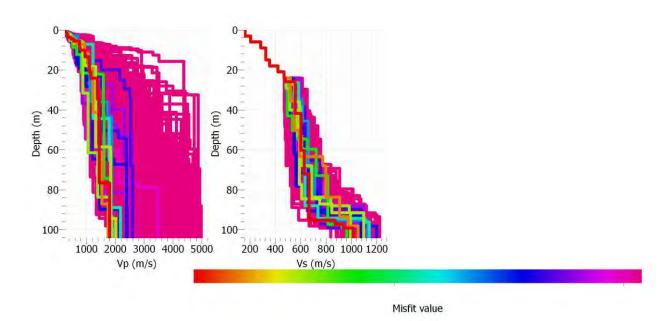
DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Punto HVSR 12. Registrazione sismica delle tre componenti, con le finestre prese in esame per i rapporti H/V.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it


Punto HVSR 13. Registrazione sismica delle tre componenti, con le finestre prese in esame per i rapporti H/V.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Punto HVSR 12. Modello sismostratigrafico ricavato dell'inversione dei dati HVSR. Il modello è stato vincolato, nella porzione più superficiale, dalle Vs acquisite dall'indagine di sismica a rifrazione in onde Sh e dall'indagine Masw in onde di Love. Le Vs aumentano gradualmente fino a profondità dell'ordine degli 80 m.

Punto HVSR 13. Modello sismostratigrafico ricavato dell'inversione dei dati HVSR. Le Vs aumentano gradualmente fino a profondità di circa 90 m. Oltre talo profondità le Vs sono associabili a bedrock sismico.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Profilo sismostratigrafico 05 – Zona Trestina Sud-ovest (Banchetti).

Modello sismostratigrafico HVSR 12 dal p.c. fino al bedrock sismico:

Prof. sismostrato	Spessore	Vs (m(s)	Note
(m)	sismostrato (m)		
0 - 3	3	163	Rifraz + masw
3 – 6	3	206	Rifraz + masw
6-9	3	286	Rifraz + masw
9 – 12	3	327	Rifraz + masw
12 – 15	3	327	Rifraz + masw
15 – 18	3	357	Rifraz + masw
18 - 21	3	423	Rifraz + masw
21 - 24	3	470	Rifraz + masw
24–31	7	478	HVSR
31 - 33	2	493	HVSR
33 - 52	19	553	HVSR
52 - 75	23	576	HVSR
75 - 80	5	606	HVSR
80 - 82	2	786	HVSR
82 - 84	2	847	HVSR
Oltre 84		1057	HVSR

Calcoli per la stima di VSH (HVSR 12)

			la /	11		17-11
٧S		spessore	h/vs	H substrato		VsH
	163	3	0,018405		82	437,4038
	206	3	0,014563			
	286	3	0,01049			
	327	6	0,018349			
	357	3	0,008403			
	423	3	0,007092			
	470	3	0,006383			
	478	7	0,014644			
	493	2	0,004057			
	553	19	0,034358			
	576	23	0,039931			
	606	5	0,008251			
	786	2	0,002545			
		somma	0,18747			

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Calcoli per la stima di Vs30 HVSR 12

VS		h spessore	9	h/vs	H substrato		Vs30
	163	3	3	0,018404908		30	311,73045
	206	3	3	0,014563107			
	286	3	3	0,01048951			
	327	(6	0,018348624			
	357	3	3	0,008403361			
	423	3	3	0,007092199			
	470	3	3	0,006382979			
	478	6	6	0,012552301			
		tot 30 m					

somma 0,096236989

Vs30 = 312 m/s

DATI RIASSUNTIVI

VSH = 437 m/s

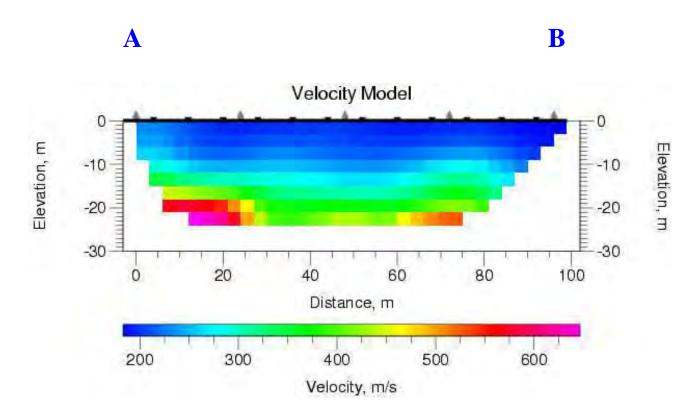
Stima profondità bedrock sismico = 82 m

Caratteristiche modello di velocità dal p.c. fino al bedrock sismico: aumento graduale di Vs con la profondità.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

TRESTINA ZONA INDUSTRIALE OVEST. PROFILO SISMICO 06 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

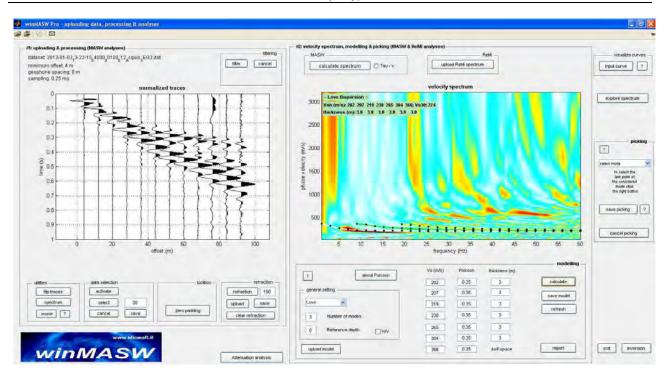


Coordinate geografiche indicative (wgs84): Punto A: Lat. 43.363827 Long. 12.226444 Punto B: Lat. 43.363434 Long. 12.225394

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

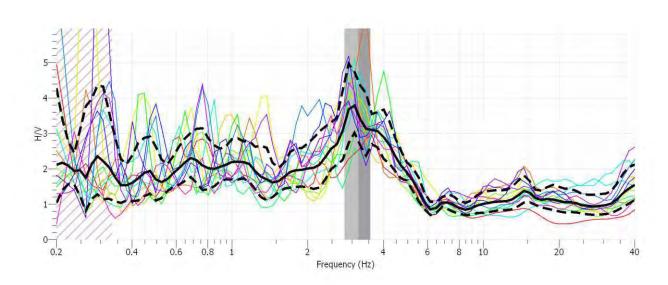
Sezione A – B: Modello di velocità (modello multistrato)



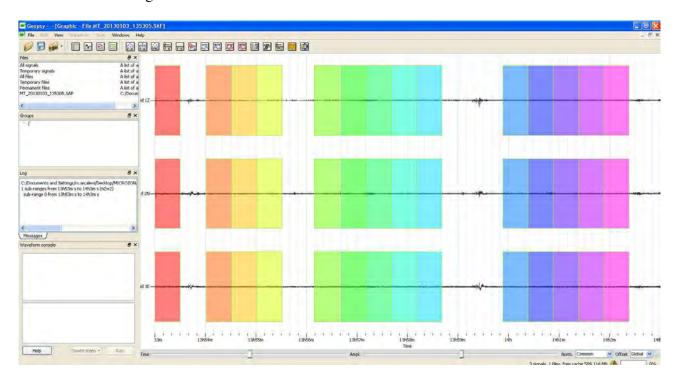
Andamento delle Vs dal p.c. al centro dello stendimento e vincoli imposti al processo di inversione HVSR.

Dist da A	Prof. (m)	Vs (m/s)
48.000000	0.00000	201.913498
48.000000	-3.000000	207.244827
48.000000	-6.000000	219.570755
48.000000	-9.000000	238.384766
48.000000	-12.000000	265.287476
48.000000	-15.000000	304.494141
48.000000	-18.000000	366.459076
48.000000	-21.000000	433,965820

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. La curva imposta con le Vs del profilo di sismica a rifrazione si allinea a quella ricavata dai dati masw.


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Analisi HVSR 23.

Coordinate geografiche indicative (wgs84) Punto HVSR_23: Lat. 43.363480 Long. 12.225537

Registrazione sismica delle tre componenti, con le finestre prese in esame per i rapporti H/V.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Modello sismostratigrafico ricavato dell'inversione dei dati HVSR 23. Il modello è stato vincolato, nella porzione più superficiale, dalle Vs acquisite dall'indagine di sismica a rifrazione in onde Sh e dall'indagine Masw in onde di Love.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Profilo sismo stratigrafico 06 – Zona Industriale Ovest

Modello sismostratigrafico dal p.c. fino al bedrock sismico:

Prof. sismostrato	Spessore	Vs (m(s)	Note
(m)	sismostrato (m)		
0 - 3	3	202	Rifraz + masw
3 – 6	3	207	Rifraz + masw
6-9	3	219	Rifraz + masw
9 – 12	3	238	Rifraz + masw
12 – 15	3	265	Rifraz + masw
15 – 18	3	304	Rifraz + masw
18 - 21	3	366	Rifraz + masw
21 - 24	3	434	Rifraz + masw
24 - 27	3	468	HVSR
27 – 29	2	476	HVSR
29 - 36	7	495	HVSR
36 - 47	11	587	HVSR
47 - 75	28	622	HVSR
75 - 93	18	730	HVSR
Oltre 93		975	HVSR

Calcoli per la stima di VSH

VS		spessore	h/vs	H substrato		VsH
	202	3	0,014851		93	453,4096
	207	3	0,014493			
	219	3	0,013699			
	238	3	0,012605			
	265	3	0,011321			
	304	3	0,009868			
	366	3	0,008197			
	434	3	0,006912			
	468	3	0,00641			
	476	2	0,004202			
	495	7	0,014141			
	587	11	0,018739			
	622	28	0,045016			
	730	18	0,024658			
		somma	0,205113			

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

VS		h spessore	h/vs	H substrato		Vs30
	202	3	0,014851485		30	286,86615
	207	3	0,014492754			
	219	3	0,01369863			
	238	3	0,012605042			
	265	3	0,011320755			
	304	3	0,009868421			
	366	3	0,008196721			
	434	3	0,006912442			
	468	3	0,006410256			
	476	2	0,004201681			
	495	1	0,002020202			

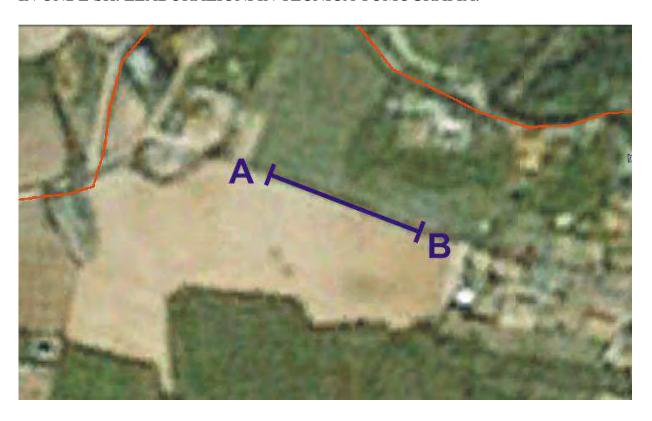
somma

0,10457839

Vs30 = 287 m/s

DATI RIASSUNTIVI

VSH = 453 m/s


Stima profondità bedrock sismico = 93 m

Caratteristiche modello di velocità dal p.c. fino al bedrock sismico: aumento graduale di Vs con la profondità.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

TRESTINA N-W VOC. COLONNELLI CASTELLACCIO. PROFILO SISMICO 07 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

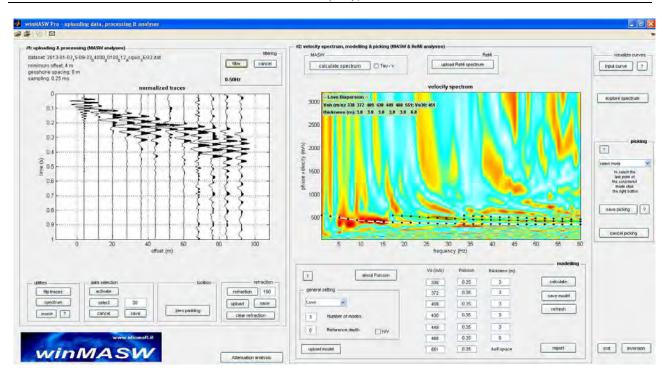


Coordinate geografiche indicative (wgs84): Punto A: Lat. 43.371710 Long. 12.231465 Punto B: Lat. 43.371377 Long. 12.232557

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

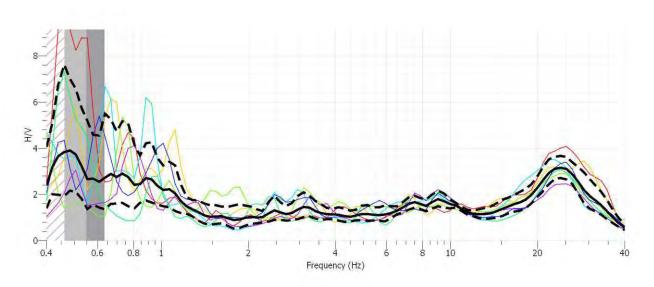
Sezione A – B: Modello di velocità (modello multistrato)



Andamento delle Vs dal p.c. al centro dello stendimento e vincoli imposti al processo di inversione HVSR.

Dist da A	Prof. (m)	Vs (m/s)
48.000000	0.00000	337.684082
48.000000	-3.000000	372.138763
48.000000	-6.000000	409.311676
48.000000	-9.00000	430.286987
48.000000	-12.000000	449.027679
48.000000	-15.000000	487.673676
48.000000	-18.000000	524.755920
48.000000	-21.000000	551.295227

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

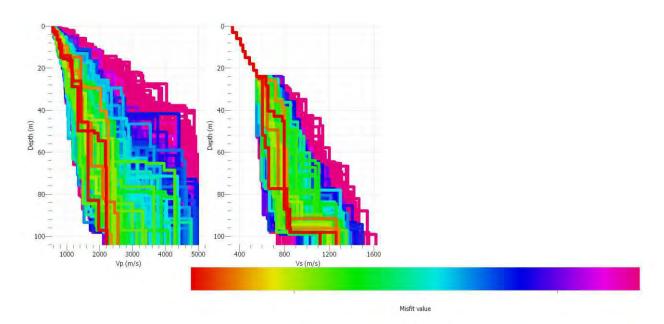

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. La curva imposta con le Vs del profilo di sismica a rifrazione si allinea a quella ricavata dai dati masw.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Analisi HVSR 25.


Coordinate geografiche indicative (wgs84) Punto HVSR_25: Lat. 43.371733 Long. 12.231415

Registrazione sismica delle tre componenti, con le finestre prese in esame per i rapporti H/V.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Modello sismostratigrafico ricavato dell'inversione dei dati HVSR 23. Il modello è stato vincolato, nella porzione più superficiale, dalle Vs acquisite dall'indagine di sismica a rifrazione in onde Sh e dall'indagine Masw in onde di Love.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Profilo sismo stratigrafico 07 – Voc. Colonnelli.

Modello sismostratigrafico dal p.c. fino al bedrock sismico:

Prof. sismostrato	Spessore	Vs (m(s)	Note
(m)	sismostrato (m)		
0 - 3	3	338	Rifraz + masw
3 – 6	3	372	Rifraz + masw
6-9	3	409	Rifraz + masw
9 – 12	3	430	Rifraz + masw
12 – 15	3	449	Rifraz + masw
15 – 18	3	488	Rifraz + masw
18 - 21	3	525	Rifraz + masw
21 - 24	3	551	Rifraz + masw
24 - 28	4	633	HVSR
28 – 40	12	655	HVSR
40 - 43	3	708	HVSR
43 - 45	2	784	HVSR
45 - 87	42	800	HVSR
87 - 98	11	843	HVSR
Oltre 98		1117	HVSR

Calcoli per la stima di VSH

VS		spessore	h/vs	H substrato		VsH
	338	3	0,008876		45	519,2229
	372	3	0,008065			
	409	3	0,007335			
	430	3	0,006977			
	449	3	0,006682			
	488	3	0,006148			
	525	3	0,005714			
	551	3	0,005445			
	633	4	0,006319			
	655	12	0,018321			
	708	3	0,004237			
	784	2	0,002551			

somma 0,086668

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Calcoli per la stima di VS30

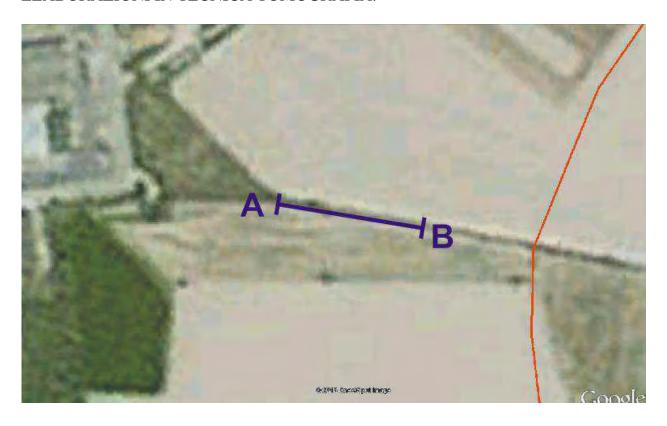
VS		h spessore	h/vs	H substrato		Vs30
	338	3	0,00887574		30	464,30644
	372	3	0,008064516			
	409	3	0,007334963			
	430	3	0,006976744			
	449	3	0,006681514			
	488	3	0,006147541			
	525	3	0,005714286			
	551	3	0,005444646			
	633	4	0,006319115			
	655	2	0,003053435			

somma 0,064612501

Vs30 = 464 m/s

DATI RIASSUNTIVI

VSH = 519 m/s

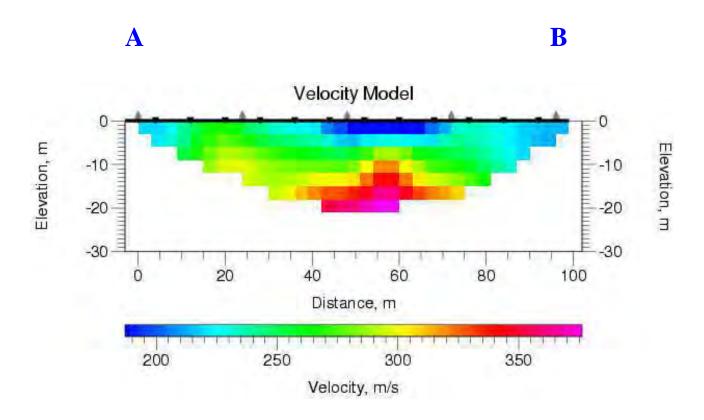

Stima profondità bedrock sismico = 45 m

Caratteristiche modello di velocità dal p.c. fino al bedrock sismico: aumento graduale di Vs con la profondità.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

TRESTINA LOCALITA' TRESTINA EST. PROFILO SISMICO 08 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

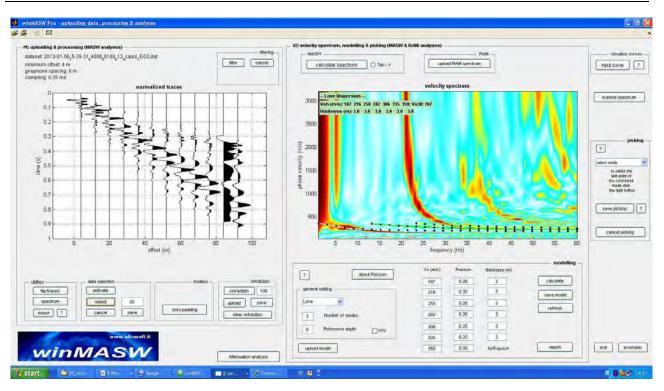


Coordinate geografiche indicative (wgs84): Punto A: Lat. 43.364478 Long. 12.242696 Punto B: Lat. 43.364304 Long. 12.243850

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

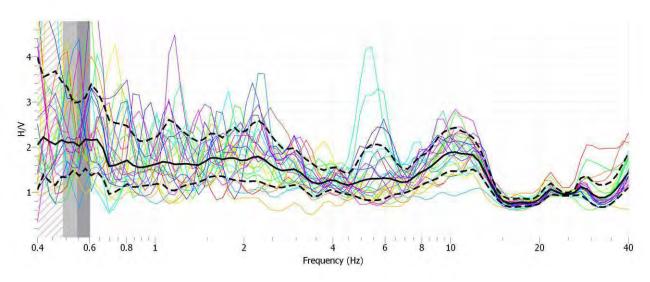
Sezione A – B: Modello di velocità (modello multistrato)



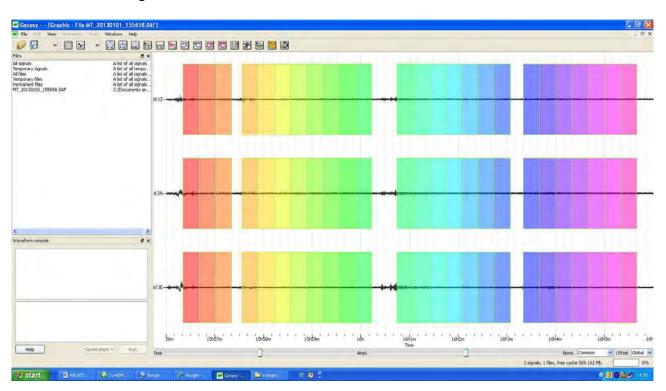
Andamento delle Vs dal p.c. al centro dello stendimento e vincoli imposti al processo di inversione HVSR.

Dist da A	Prof. (m)	Vs (m/s)
48.000000	0.00000	187.034836
48.000000	-3.000000	216.113358
48.000000	-6.000000	258.746246
48.000000	-9.000000	282.693726
48.000000	-12.000000	306.483521
48.000000	-15.000000	335.878326
48.000000	-18.000000	359.319977

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

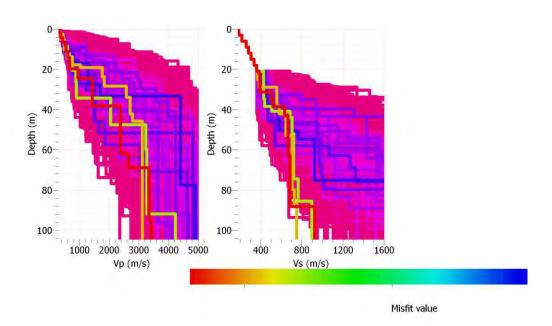

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. La curva imposta con le Vs del profilo di sismica a rifrazione si allinea a quella ricavata dai dati masw.


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Analisi HVSR 20.


Coordinate geografiche indicative (wgs84) Punto HVSR_20: Lat. 43.364436 Long. 12.241778

Registrazione sismica delle tre componenti, con le finestre prese in esame per i rapporti H/V.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Modello sismostratigrafico ricavato dell'inversione dei dati HVSR 20. Il modello è stato vincolato, nella porzione più superficiale, dalle Vs acquisite dall'indagine di sismica a rifrazione in onde Sh e dall'indagine Masw in onde di Love.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Profilo sismo stratigrafico 08 – Trestina Est.

Modello sismostratigrafico dal p.c. fino al bedrock sismico:

Prof. sismostrato	Spessore	Vs (m(s)	Note
(m)	sismostrato (m)		
0-3	3	187	Rifraz + masw
3 – 6	3	216	Rifraz + masw
6 – 9	3	258	Rifraz + masw
9 – 12	3	282	Rifraz + masw
12 – 15	3	306	Rifraz + masw
15 – 18	3	335	Rifraz + masw
18 - 21	3	359	Rifraz + masw
21 - 31	10	380	HVSR
31 – 35	4	504	HVSR
35 - 38	3	513	HVSR
38 - 43	5	628	HVSR
43 - 62	19	658	HVSR
62 - 88	26	678	HVSR
Oltre 88		927	HVSR

Calcoli per la stima di VSH

vs		spessore	h/vs	H substrato		VsH
	187	3	0,016043		88	452,2118
	216	3	0,013889			
	258	3	0,011628			
	282	3	0,010638			
	306	3	0,009804			
	335	3	0,008955			
	359	3	0,008357			
	380	10	0,026316			
	504	4	0,007937			
	513	3	0,005848			
	628	5	0,007962			
	658	19	0,028875			
	678	26	0,038348			

0,194599

somma

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Calcoli per la stima di VS30

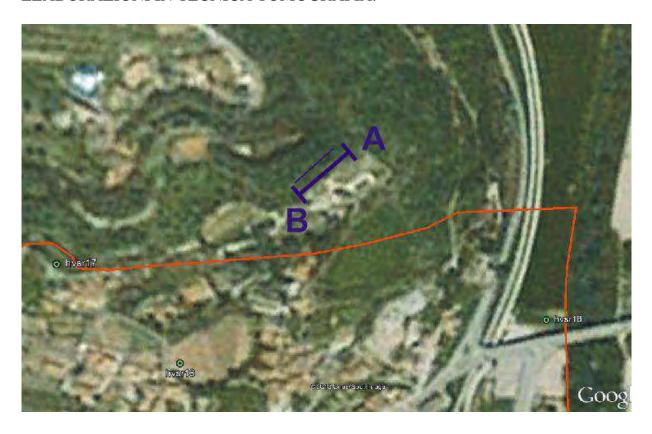
VS		h spessor	e	h/vs	H substrato		Vs30
1	.87		3	0,016042781		30	291,26842
2	16		3	0,013888889			
2	58		3	0,011627907			
2	82		3	0,010638298			
3	06		3	0,009803922			
3	35		3	0,008955224			
3	59		3	0,008356546			
3	80		9	0,023684211			
		tot 30 m					

somma 0,102997776

Vs30 = 291 m/s

DATI RIASSUNTIVI

VSH = 452 m/s


Stima profondità bedrock sismico = 88 m

Caratteristiche modello di velocità dal p.c. fino al bedrock sismico: aumento graduale di Vs con la profondità.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

TRESTINA LOCALITA' CASTELLACCIO. PROFILO SISMICO 09 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

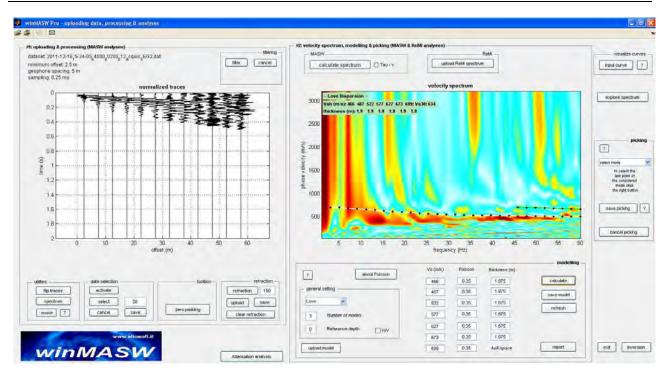
Coordinate geografiche indicative (wgs84):

Punto A: Lat. 43.372699 Long. 12.237519 Punto B: Lat. 43.372352 Long. 12.236944

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

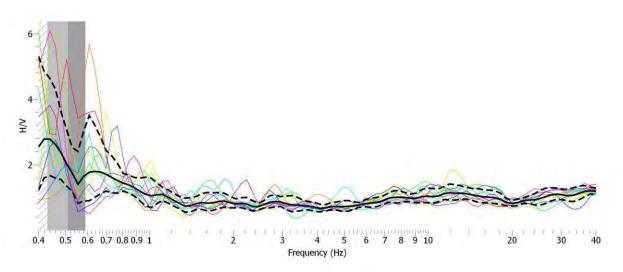
Sezione A – B: Modello di velocità (modello multistrato)



Andamento delle Vs dal p.c. al centro dello stendimento e vincoli imposti al processo di inversione HVSR.

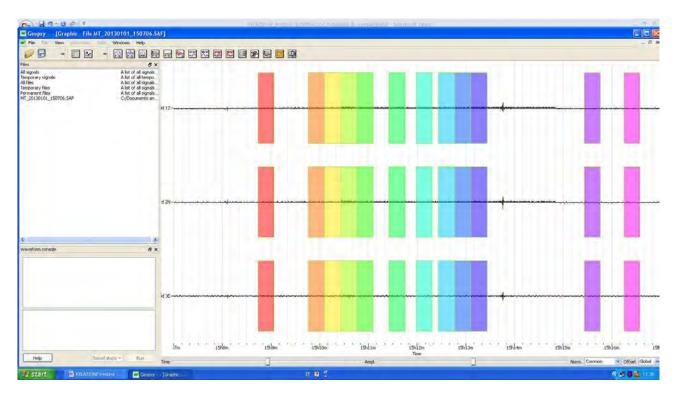
Dist da A	Prof. (m)	Vs (m/s)
30.000000	0.00000	466.118164
30.000000	-1.875000	487.279449
30.000000	-3.750000	522.868347
30.000000	-5.625000	577.035461
30.000000	-7.500000	627.538513
30.000000	-9.375000	673.381104
30.000000	-11.250000	699.491760

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

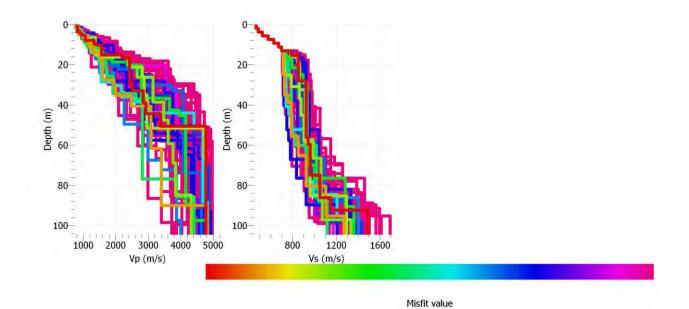
Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. La curva imposta con le Vs del profilo di sismica a rifrazione risulta di poco superiore rispetto a quella dei dati masw. Ciò è dovuto al fatto che le Vs per i vincoli sono state estrapolate dalla verticale posta al centro del profilo mentre la curva dei dati masw e quindi non considera le eteropie laterali di Vs.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Analisi HVSR 17.

Coordinate geografiche indicative (wgs84) Punto HVSR_17:


Lat. 43.371771 Long. 12.234149

Registrazione sismica delle tre componenti, con le finestre prese in esame per i rapporti H/V.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Modello sismostratigrafico ricavato dell'inversione dei dati HVSR 17. Il modello è stato vincolato, nella porzione più superficiale, dalle Vs acquisite dall'indagine di sismica a rifrazione in onde Sh e dall'indagine Masw in onde di Love.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Profilo sismo stratigrafico 09 – LOC. CASTELLACCIO.

Modello sismostratigrafico dal p.c. fino al bedrock sismico:

Prof. sismostrato	Spessore	Vs (m(s)	Note
(m)	sismostrato (m)		
0 - 1.875	1.875	466	Rifraz + masw
1.875 - 3.75	1.875	487	Rifraz + masw
3.75 - 5.625	1.875	523	Rifraz + masw
5.625 – 7.5	1.875	577	Rifraz + masw
7.5 - 9.375	1.875	627	Rifraz + masw
9.375 – 11.25	1.875	673	Rifraz + masw
11.25 – 13.125	1.875	699	Rifraz + masw
13.125 – 15.48	2.355	781	HVSR
15.48 a 28.06	12.58	855	HVSR
28.06 - 56	27.94	920	HVSR

Calcoli per la stima di VSH

vs		spessore	h/vs	H substrato		VsH
	466	1,875	0,004024		15,48	591,2325
	487	1,875	0,00385			
	523	1,875	0,003585			
	577	1,875	0,00325			
	627	1,875	0,00299			
	673	1,875	0,002786			
	699	1,875	0,002682			
	781	2,355	0,003015			

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Calcoli per la stima di VS30

VS		h spessore	h/vs	H substrato		Vs30
	466	1,875	0,004023605		30	697,59755
	487	1,875	0,003850103			
	523	1,875	0,003585086			
	577	1,875	0,003249567			
	627	1,875	0,002990431			
	673	1,875	0,002786033			
	699	1,875	0,002682403			
	781	2,355	0,003015365			
	855	12,58	0,01471345			
	920	1,94	0,002108696			

tot 30 m

somma 0,043004738

DATI RIASSUNTIVI

VSH = 591 m/s

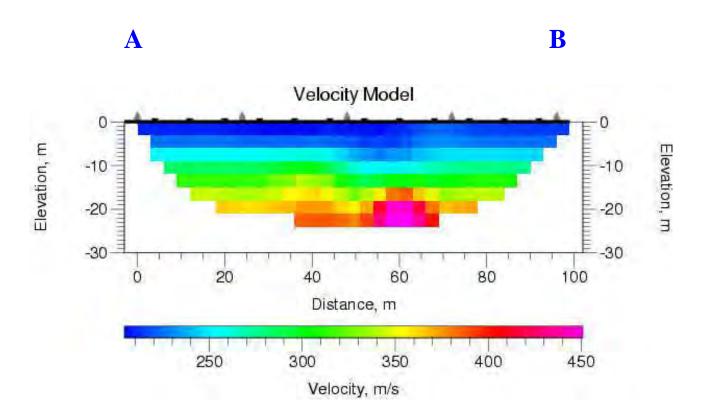
Stima profondità bedrock sismico = 15 m

Caratteristiche modello di velocità dal p.c. fino al bedrock sismico: aumento graduale di Vs con la profondità.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

LOCALITA' TRESTINA CENTRO NUOVA LOTTIZZAZIONE. PROFILO SISMICO 10 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

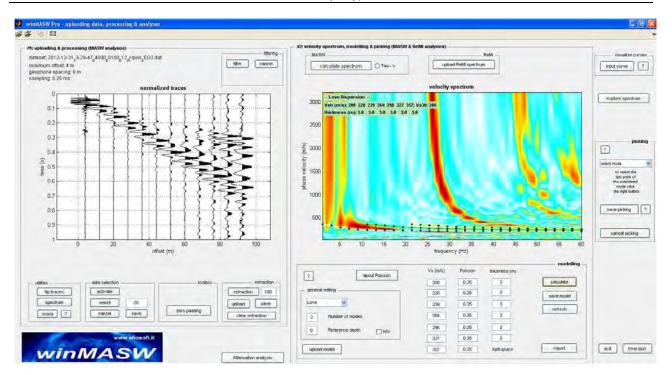

Coordinate geografiche indicative (wgs84):

Punto A: Lat. 43.363547 Long. 12.235777 Punto B: Lat. 43.364276 Long. 12.235184

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

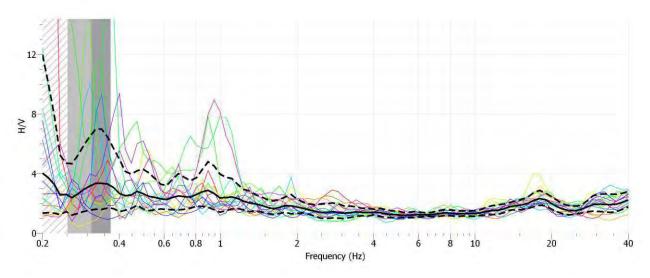
Sezione A – B: Modello di velocità (modello multistrato)



Andamento delle Vs dal p.c. al centro dello stendimento e vincoli imposti al processo di inversione HVSR.

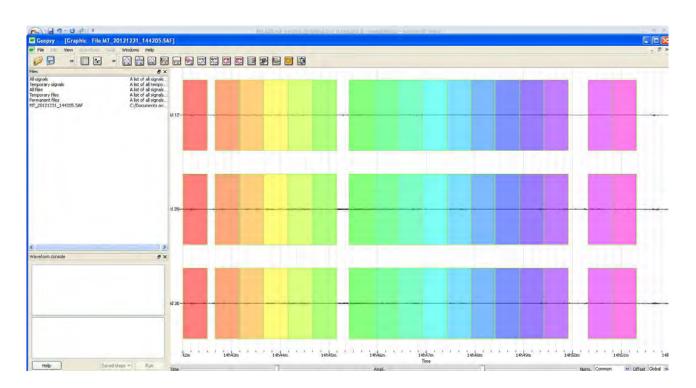
Dist da A	Prof. (m)	Vs (m/s)
48.000000	0.00000	207.781006
48.000000	-3.000000	219.893265
48.000000	-6.000000	239.087479
48.000000	-9.000000	264.347900
48.000000	-12.000000	296.305939
48.000000	-15.000000	326.586273
48.000000	-18.000000	356.917480
48.000000	-21.000000	379.126343

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

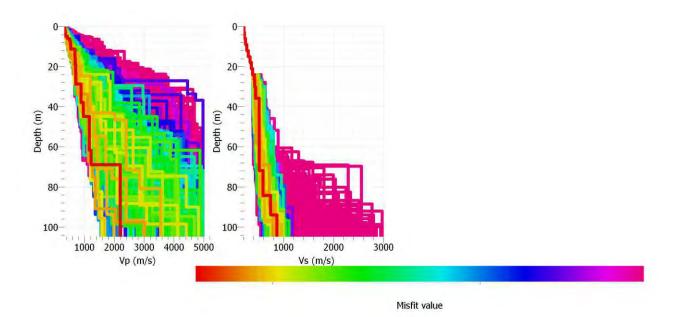
Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. La curva imposta con le Vs del profilo di sismica a rifrazione risulta di poco inferiore rispetto a quella dei dati masw. Ciò è dovuto al fatto che le Vs per i vincoli sono state estrapolate dalla verticale posta al centro del profilo.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Analisi HVSR10

Coordinate geografiche indicative (wgs84) Punto HVSR_10:


Lat. 43.363731 Long. 12.235756

Registrazione sismica delle tre componenti, con le finestre prese in esame per i rapporti H/V.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Modello sismostratigrafico ricavato dell'inversione dei dati HVSR 10. Il modello è stato vincolato, nella porzione più superficiale, dalle Vs acquisite dall'indagine di sismica a rifrazione in onde Sh e dall'indagine Masw in onde di Love.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Profilo sismo stratigrafico 10 – LOC. TRESTINA CENTRO NUOVA LOTTIZZAZIONE.

Modello sismostratigrafico dal p.c. fino al bedrock sismico:

Prof. sismostrato	Spessore	Vs (m(s)	Note
(m)	sismostrato (m)		
0 - 3	3	208	Rifraz + masw
3-6	3	220	Rifraz + masw
6-9	3	239	Rifraz + masw
9 – 12	3	264	Rifraz + masw
12 – 15	3	296	Rifraz + masw
15 – 18	3	327	Rifraz + masw
18 – 21	3	357	Rifraz + masw
21 - 24	3	379	Rifraz + masw
24 - 27	3	413	HVSR
27 - 30	3	424	HVSR
30 - 36	6	441	HVSR
36 - 72	36	511	HVSR
72 - 84	12	590	HVSR
84 – 93	9	738	HVSR
Oltre 93		867	HVSR

Calcoli per la stima di VSH

	Ι					
VS		spessore	h/vs	H substrato		VsH
	208	3	0,014423		93	425,5654
	220	3	0,013636			
	239	3	0,012552			
	264	3	0,011364			
	296	3	0,010135			
	327	3	0,009174			
	357	3	0,008403			
	379	3	0,007916			
	413	3	0,007264			
	424	3	0,007075			
	441	6	0,013605			
	511	36	0,07045			
	590	12	0,020339			
	738	9	0,012195			
		somma	0,218533			

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Calcoli per la stima di VS30

VS		h spessore	h/vs	H substrato		Vs30
	208	3	0,014423077		30	294,28167
	220	3	0,013636364			
	239	3	0,012552301			
	264	3	0,011363636			
	296	3	0,010135135			
	327	3	0,009174312			
	357	3	0,008403361			
	379	3	0,007915567			
	413	3	0,007263923			
	424	3	0,007075472			

somma 0,101943148

DATI RIASSUNTIVI

VSH = 426 m/s

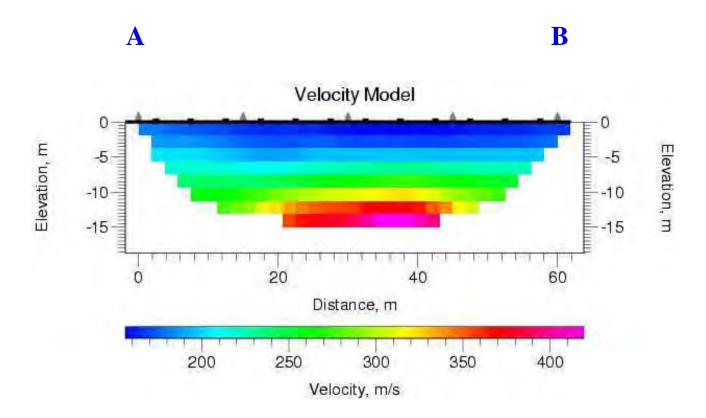
Stima profondità bedrock sismico = 93 m

Caratteristiche modello di velocità dal p.c. fino al bedrock sismico: aumento graduale di Vs con la profondità.

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

LOCALITA' TRESTINA NORD-EST SOTTO VIADOTTO. PROFILO SISMICO 11 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

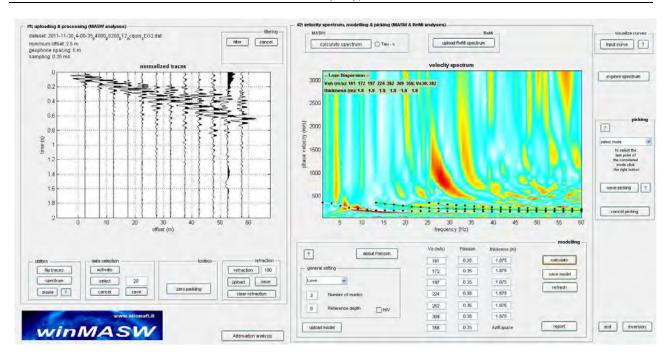

Coordinate geografiche indicative (wgs84):

Punto A: Lat. 43.371169 Long. 12.239596 Punto B: Lat. 43.371161 Long. 12.240332

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Sezione A – B: Modello di velocità (modello multistrato)



Andamento delle Vs dal p.c. circa al centro dello stendimento.

Dist da A	Prof. (m)	Vs (m/s)
28.125000	0.00000	160.695068
28.125000	-1.875000	172.060959
28.125000	-3.750000	196.620285
28.125000	-5.625000	224.612350
28.125000	-7.500000	261.813324
28.125000	-9.375000	308.862274
28.125000	-11.250000	356.258820
28 125000	-13.125000	380.170532

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

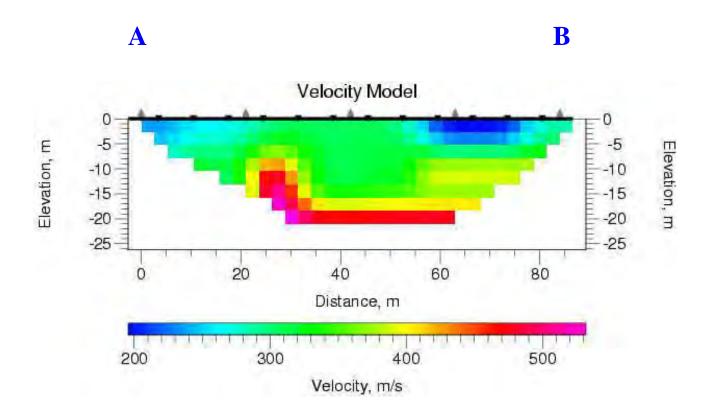
Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. La curva imposta con le Vs del profilo di sismica a rifrazione si allinea a quella dello spettro di velocità

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

LOCALITA' TRESTINA CIMITERO. PROFILO SISMICO 12 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

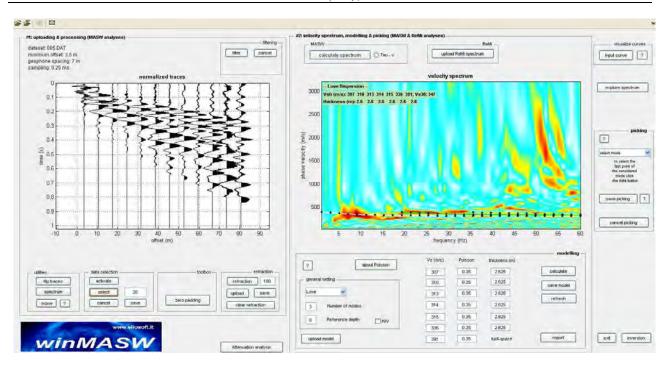

Coordinate geografiche indicative (wgs84):

Punto A: Lat. 43.368640 Long. 12.230666 Punto B: Lat. 43.367891 Long. 12.230718

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Sezione A – B: Modello di velocità (modello multistrato)

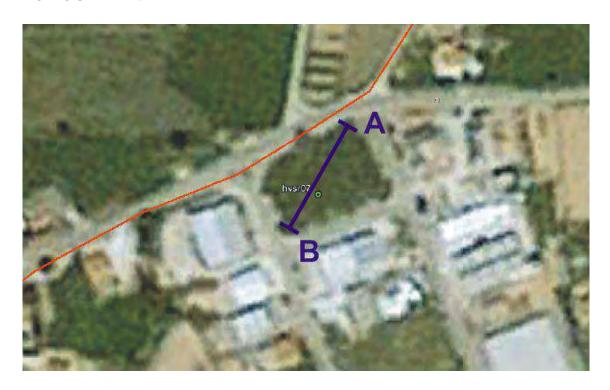


Andamento delle Vs dal p.c. al centro dello stendimento.

Dist da A	Prof. (m)	Vs (m/s)
42.000000	0.00000	306.703857
42.000000	-2.625000	309.846558
42.000000	-5.250000	312.517578
42.000000	-7.875000	314.681274
42.000000	-10.500000	315.014282
42.000000	-13.125000	335.986206
42.000000	-15.750000	391.264709
42.000000	-18.375000	469.644531

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

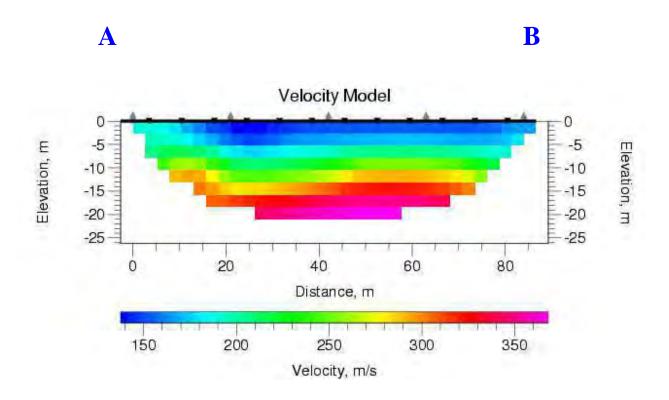


Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. La curva imposta con le Vs del profilo di sismica a rifrazione si allinea a quella dello spettro di velocità

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

LOCALITA' TRESTINA ZONA IND OVEST AREA SETTENTRIONALE. PROFILO SISMICO 13 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

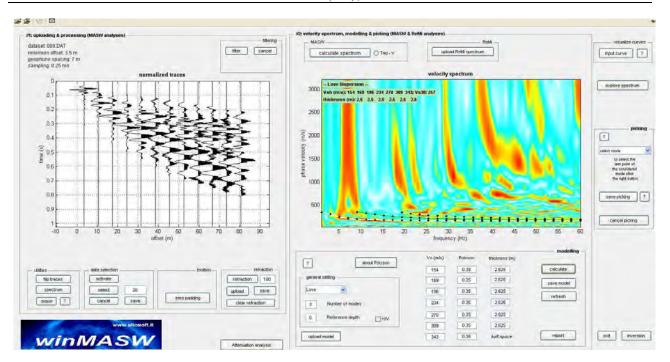

Coordinate geografiche indicative (wgs84):

Punto A: Lat. 43.367237 Long. 12.226746 Punto B: Lat. 43.366571 Long. 12.226237

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Sezione A – B: Modello di velocità (modello multistrato)



Andamento delle Vs dal p.c. al centro dello stendimento.

Dist da A	Prof. (m)	Vs (m/s)
42.000000	0.00000	153.594955
42.000000	-2.625000	168.620010
42.000000	-5.250000	195.578568
42.000000	-7.875000	233.803909
42.000000	-10.500000	269.650818
42.000000	-13.125000	309.005371
42.000000	-15.750000	343.695892
42.000000	-18.375000	363.533234

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. La curva imposta con le Vs del profilo di sismica a rifrazione si allinea a quella dello spettro di velocità

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

LOCALITA' TRESTINA ZONA IND OVEST AREA MERIDIONALE. PROFILO SISMICO 14 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

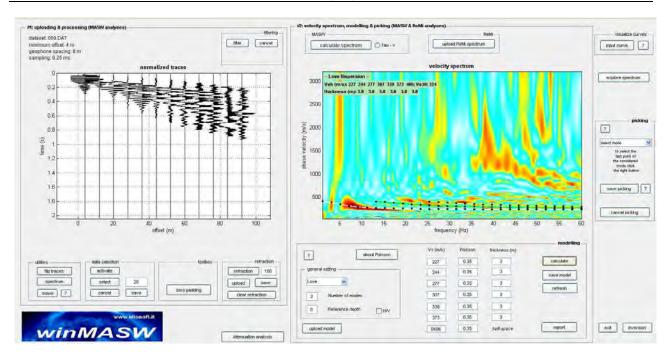
Coordinate geografiche indicative (wgs84):

Punto A: Lat. 43.363850 Long. 12.228664 Punto B: Lat. 43.363487 Long. 12.229752

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Sezione A – B: Modello di velocità (modello multistrato)

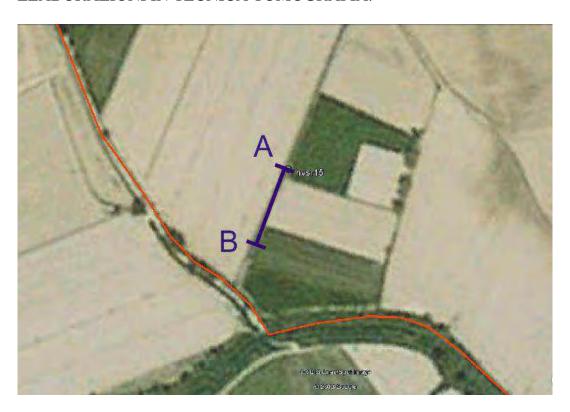


Andamento delle Vs dal p.c. al centro dello stendimento.

Dist da A	Prof. (m)	Vs (m/s)
48.000000	0.00000	227.197876
48.000000	-3.000000	244.277390
48.000000	-6.000000	277.022797
48.000000	-9.000000	306.785034
48.000000	-12.000000	338.910278
48.000000	-15.000000	372.984589
48.000000	-18.000000	406.288452
48.000000	-21.000000	426.656494

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

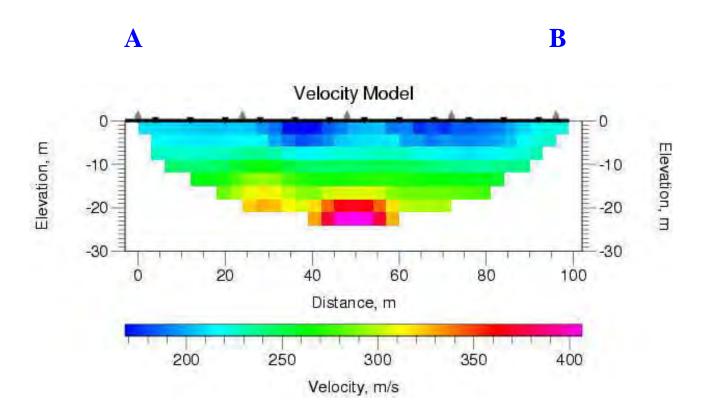


Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. La curva imposta con le Vs del profilo di sismica a rifrazione si allinea a quella dello spettro di velocità

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

LOCALITA' TRESTINA SUD-OVEST. PROFILO SISMICO 15 IN ONDE SH. ELABORAZIONI IN TECNICA TOMOGRAFIA.

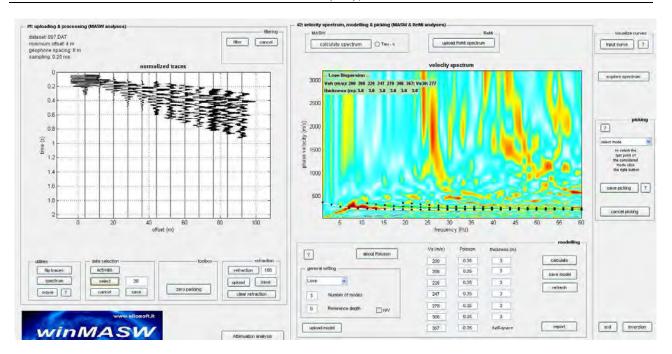

Coordinate geografiche indicative (wgs84):

Punto A: Lat. 43.361384 Long. 12.228277 Punto B: Lat. 43.360586 Long. 12.227837

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

Sezione A – B: Modello di velocità (modello multistrato)

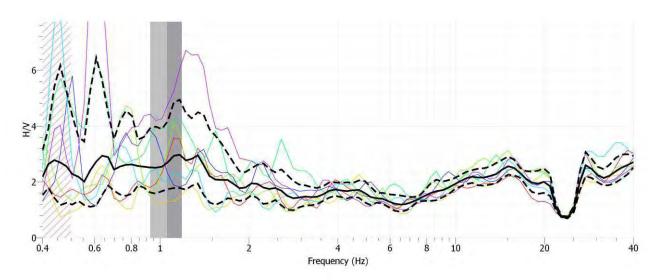


Andamento delle Vs dal p.c. al centro dello stendimento.

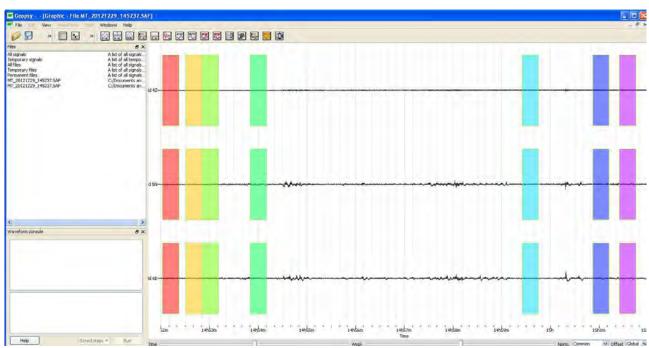
Dist da A	Prof. (m)	Vs (m/s)
48.000000	0.000000	200.326981
48.000000	-3.000000	208.711624
48.000000	-6.000000	225.561523
48.000000	-9.000000	246.885818
48.000000	-12.000000	269.806793
48.000000	-15.000000	305.993500
48.000000	-18.000000	366.851074
48 000000	-21 000000	406 539764

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

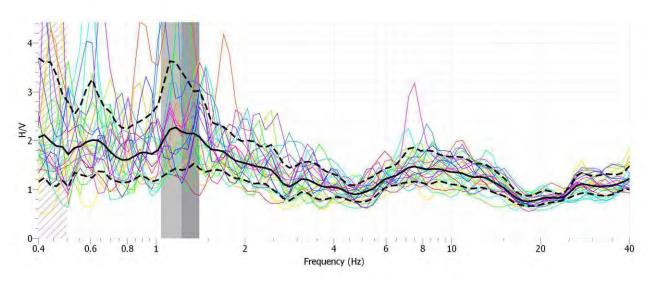


Elaborazione Masw con l'attribuzione delle Vs acquisite dal profilo di sismica a rifrazione in onde Sh. La curva imposta con le Vs del profilo di sismica a rifrazione si allinea a quella dello spettro di velocità

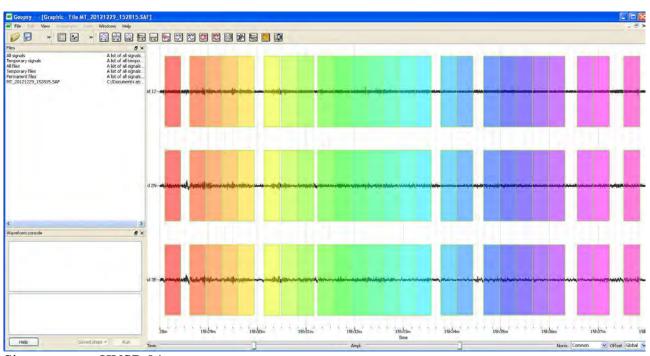

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

ELABORAZIONI ALTRI PUNTI DI INDAGINE HVSR

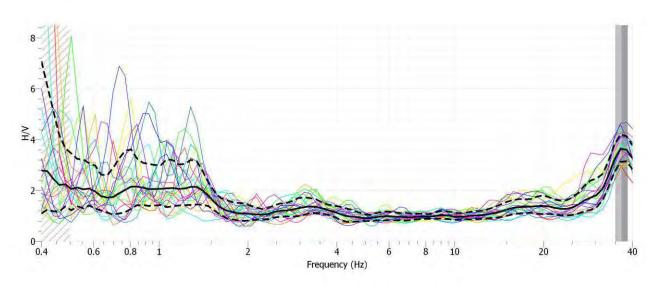


HVSR 02

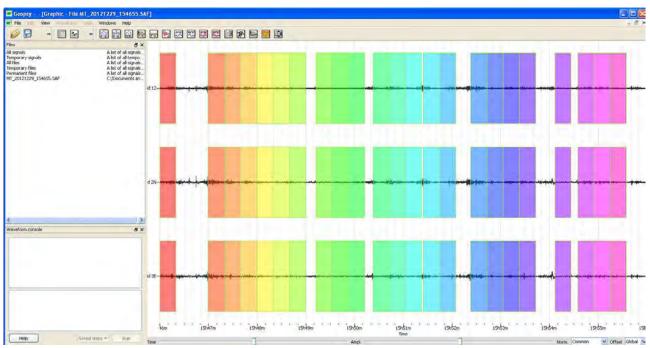


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

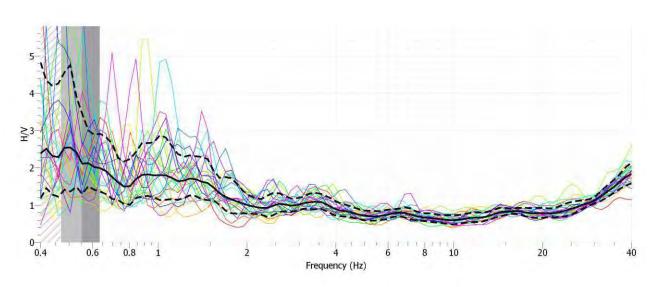


HVSR 04

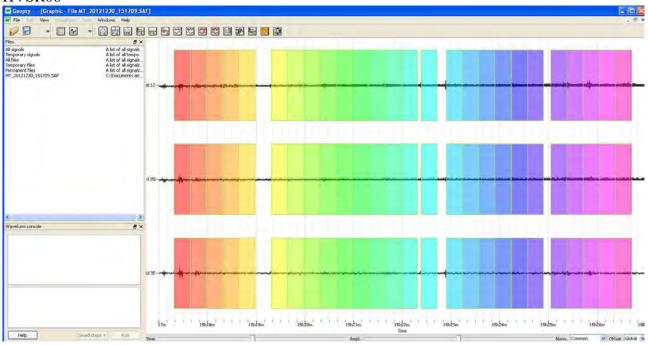


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

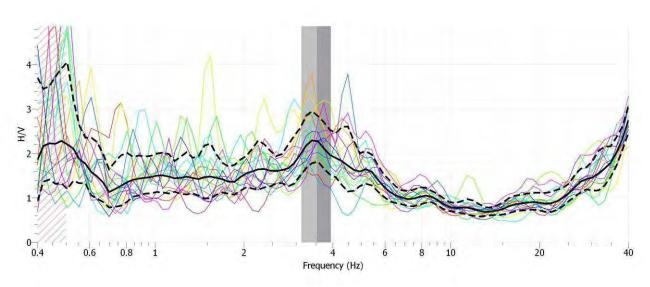


HVSR 05



DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

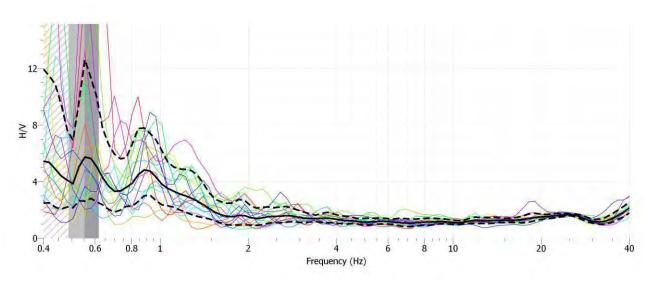
Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it



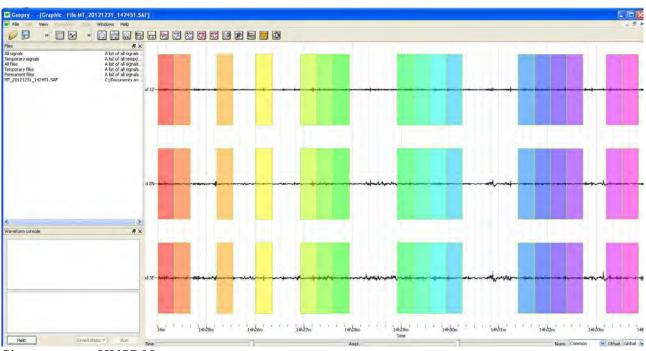
HVSR06

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

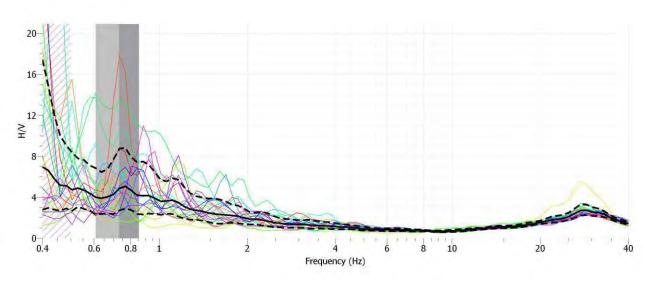


HVSR07

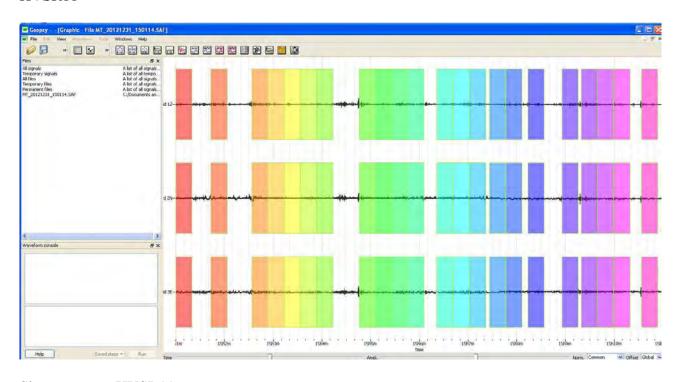


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

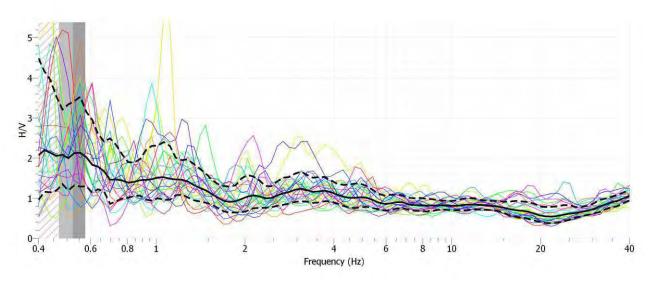


HVSR 09

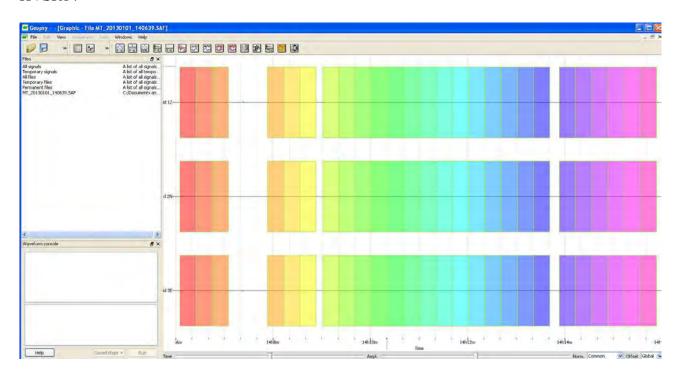


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

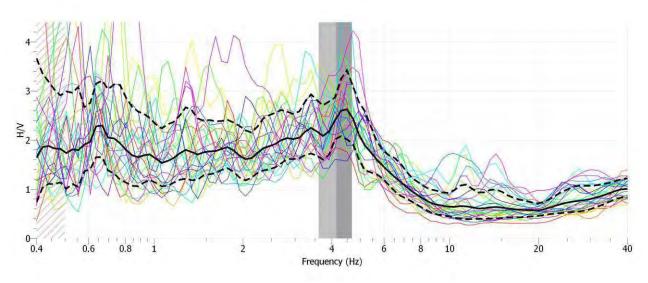


HVSR11

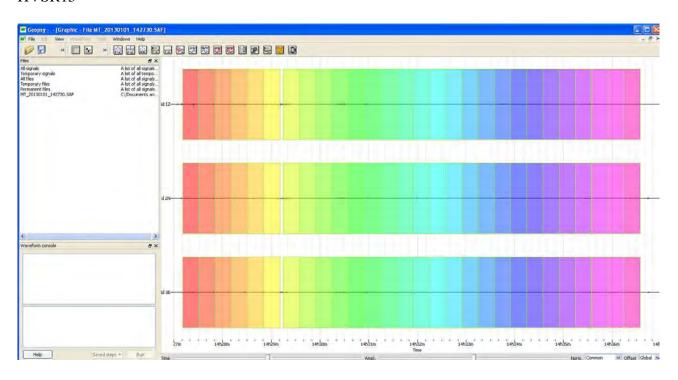


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

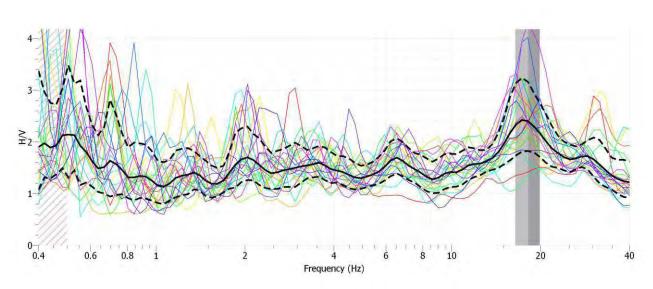


HVSR14

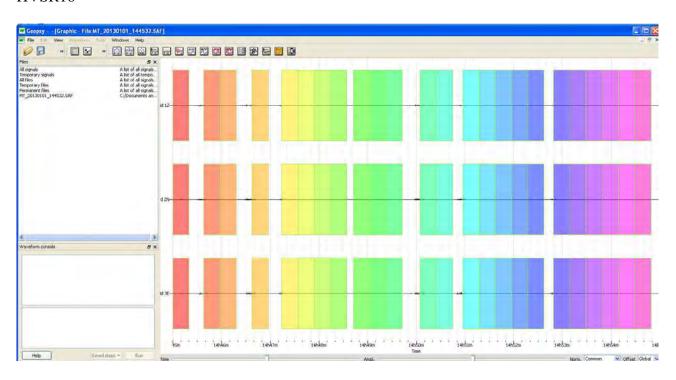


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

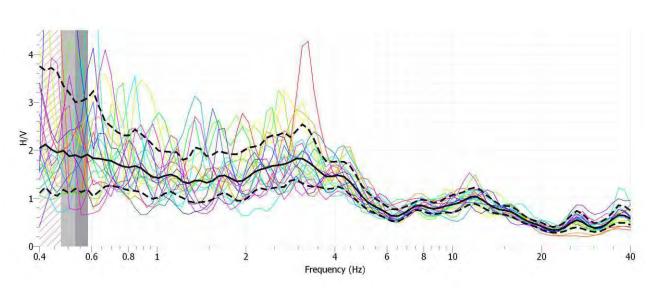


HVSR15



DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

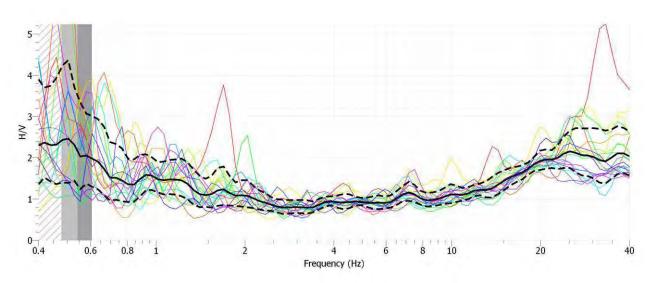
Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it



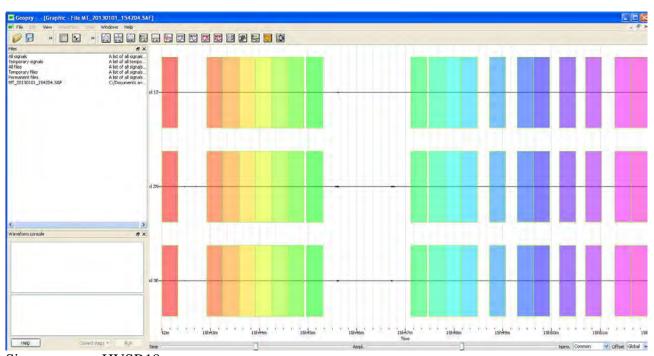
HVSR16

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

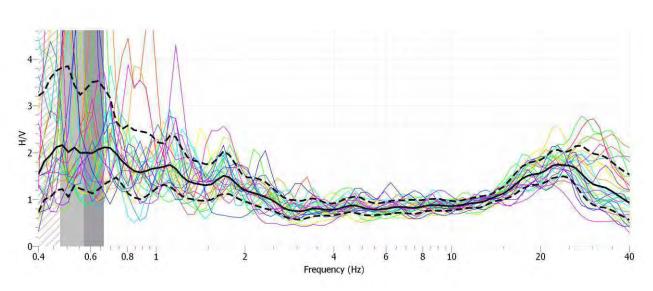


HVSR18

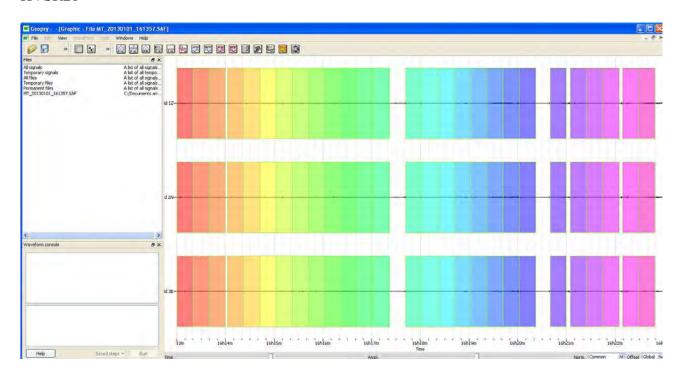


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

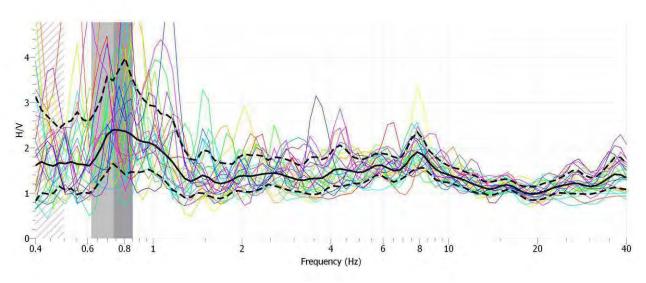


HVSR19

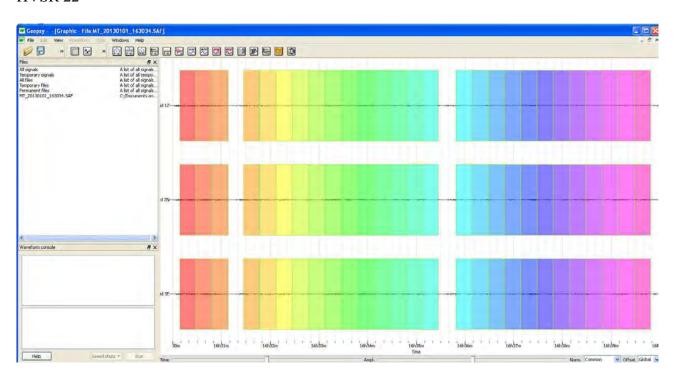


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

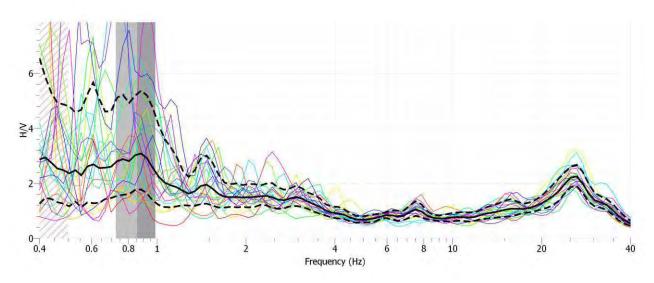


HVSR21

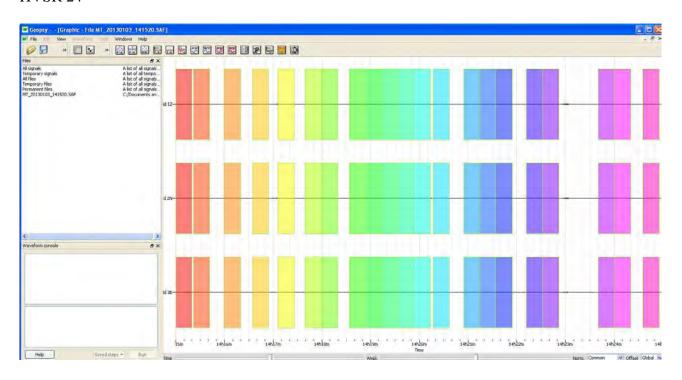


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

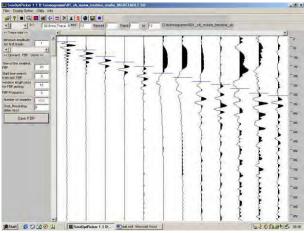


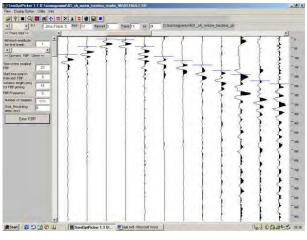
HVSR 22

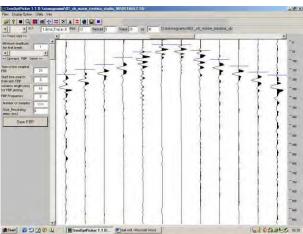


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

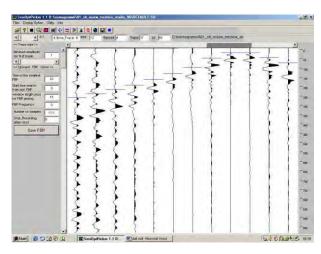
Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

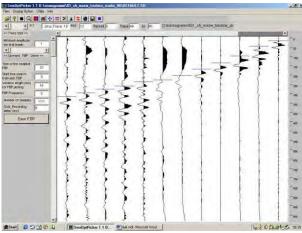

HVSR 24

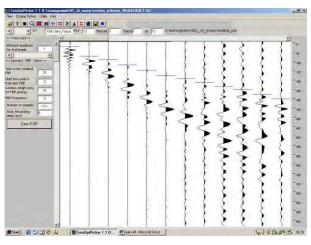


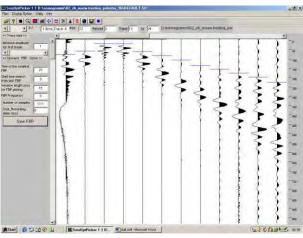

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

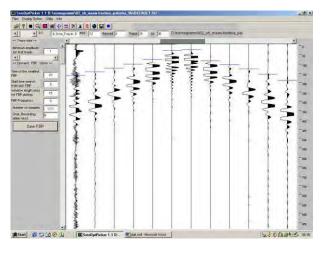
Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it


SISMOGRAMMI

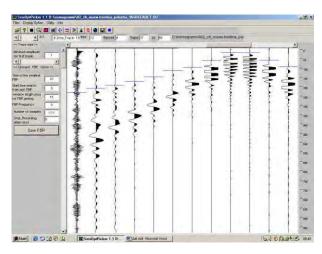


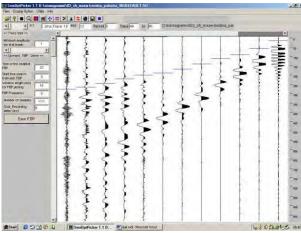

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

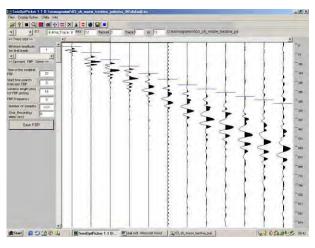


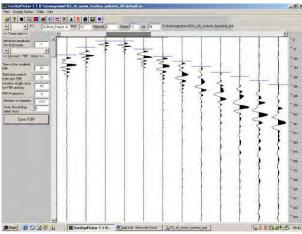


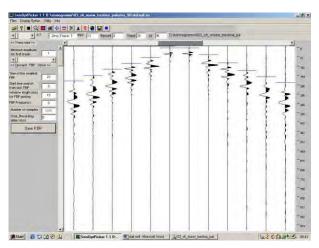
DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

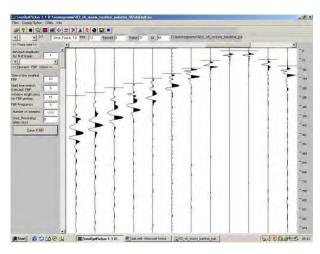


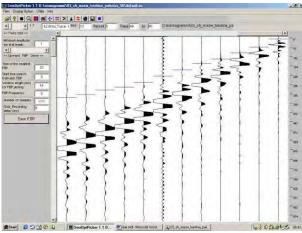

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

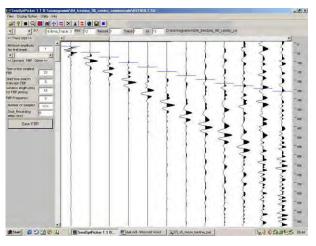


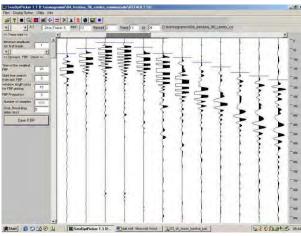


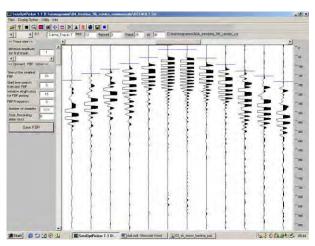
DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

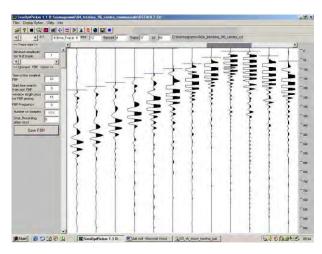


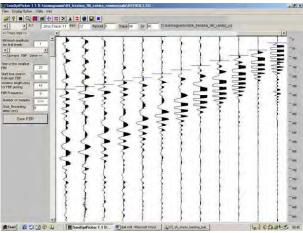

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

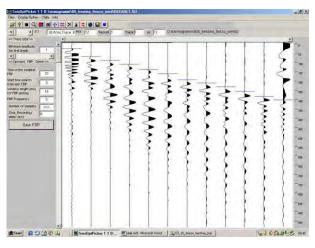


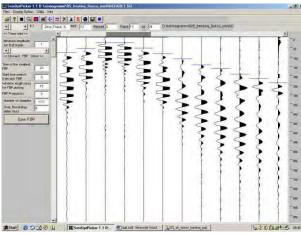


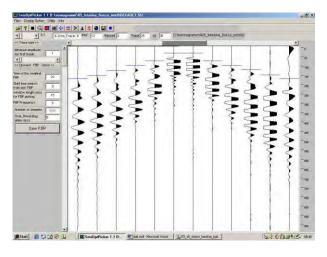
DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

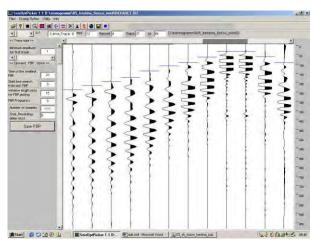


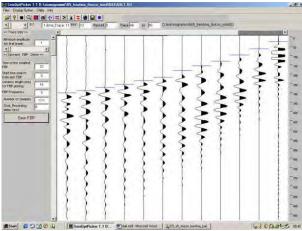

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

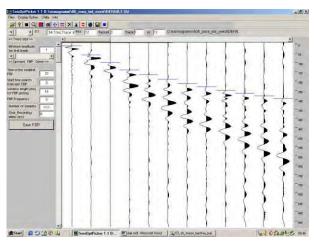


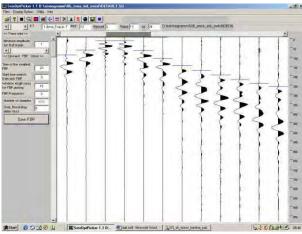


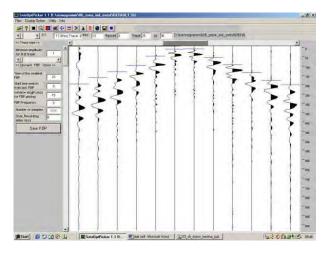
DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it



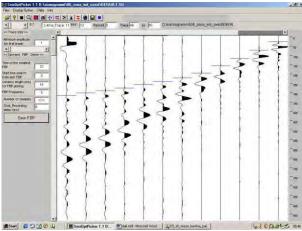

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

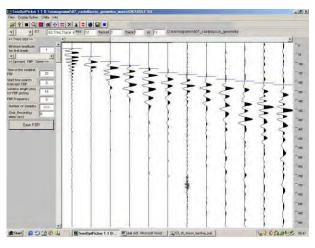


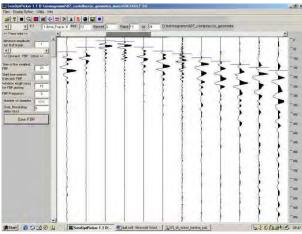


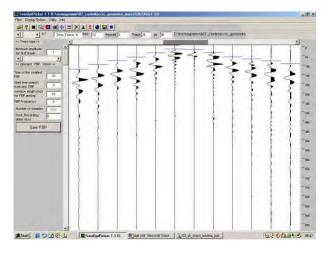
DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

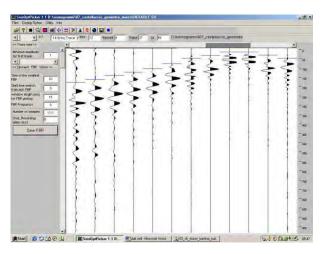


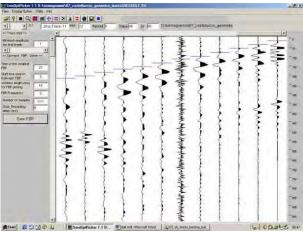

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

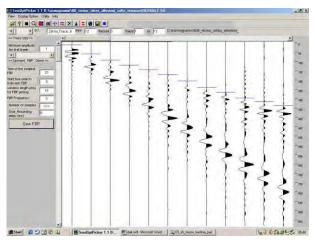


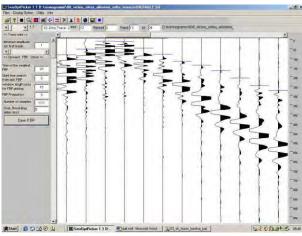


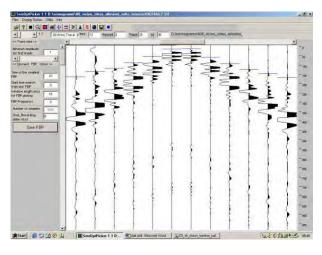
DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

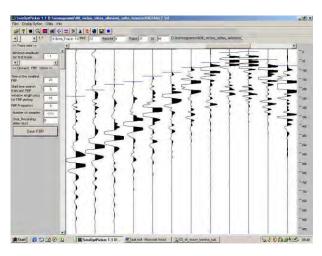


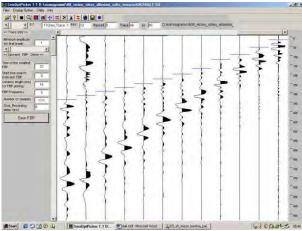

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

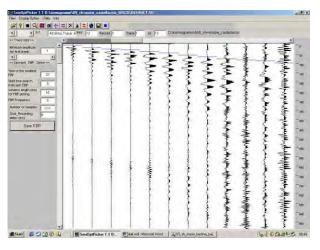


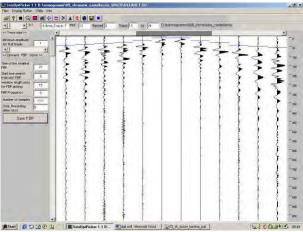


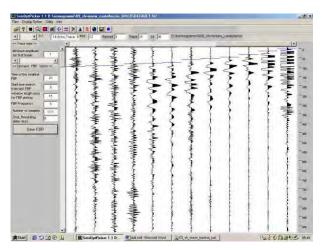
DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it



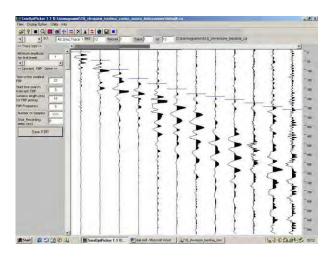

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

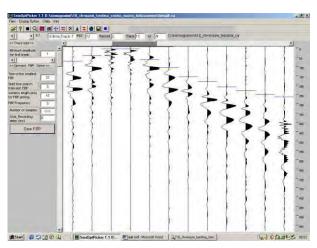


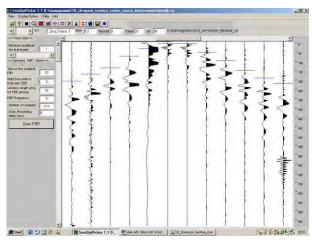


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

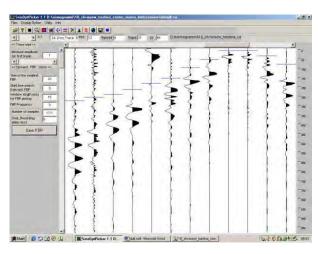
Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

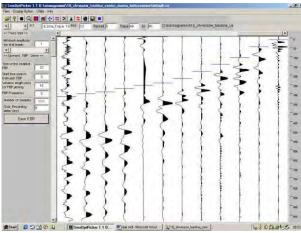


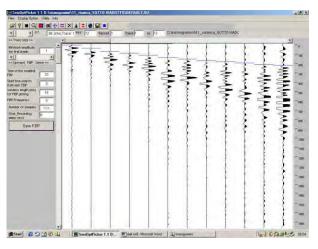


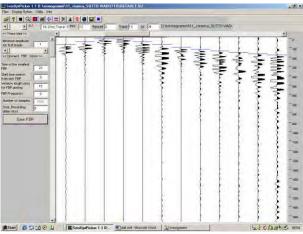


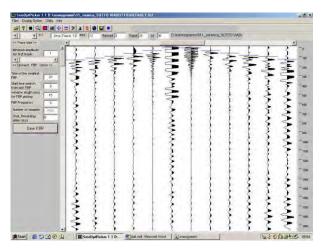
DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

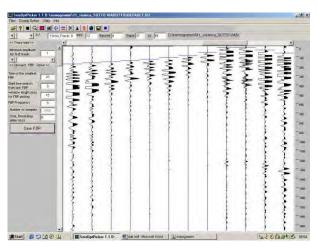


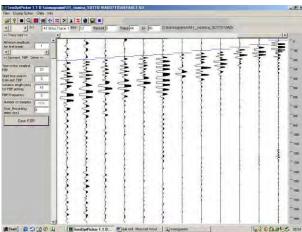

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

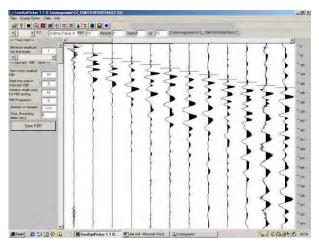


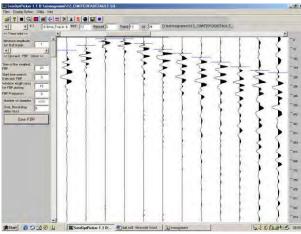


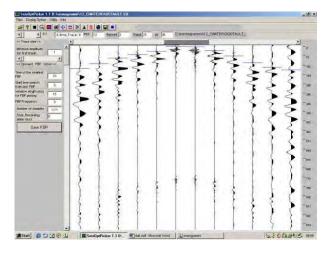
DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

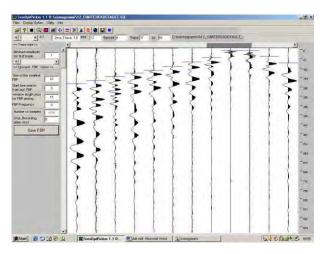


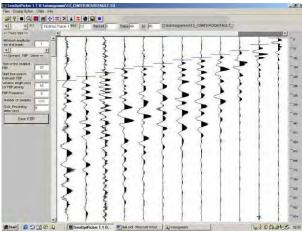

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

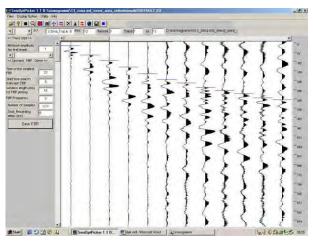


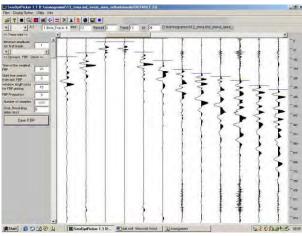


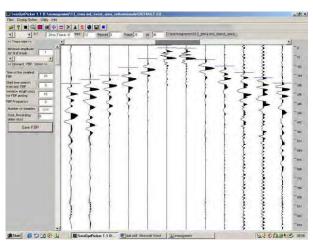
DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

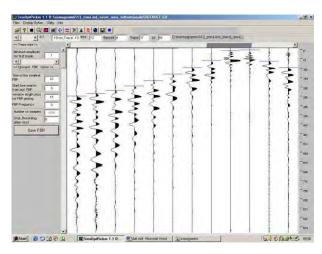


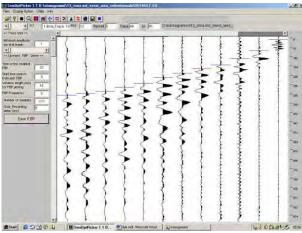

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

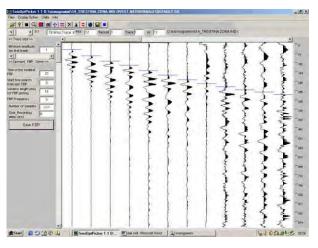


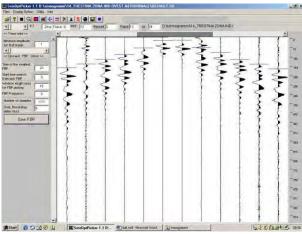


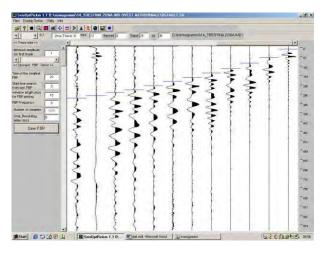
DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it



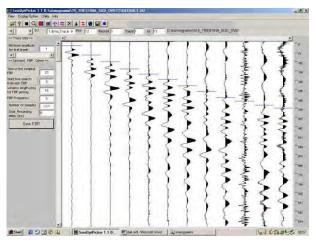

DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

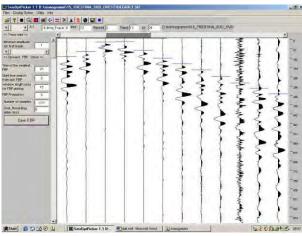


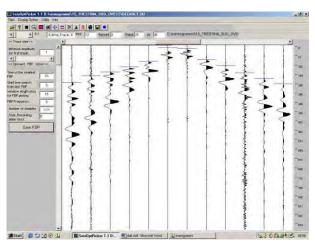


DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

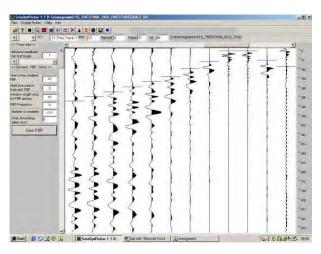
Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it

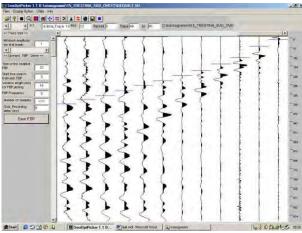


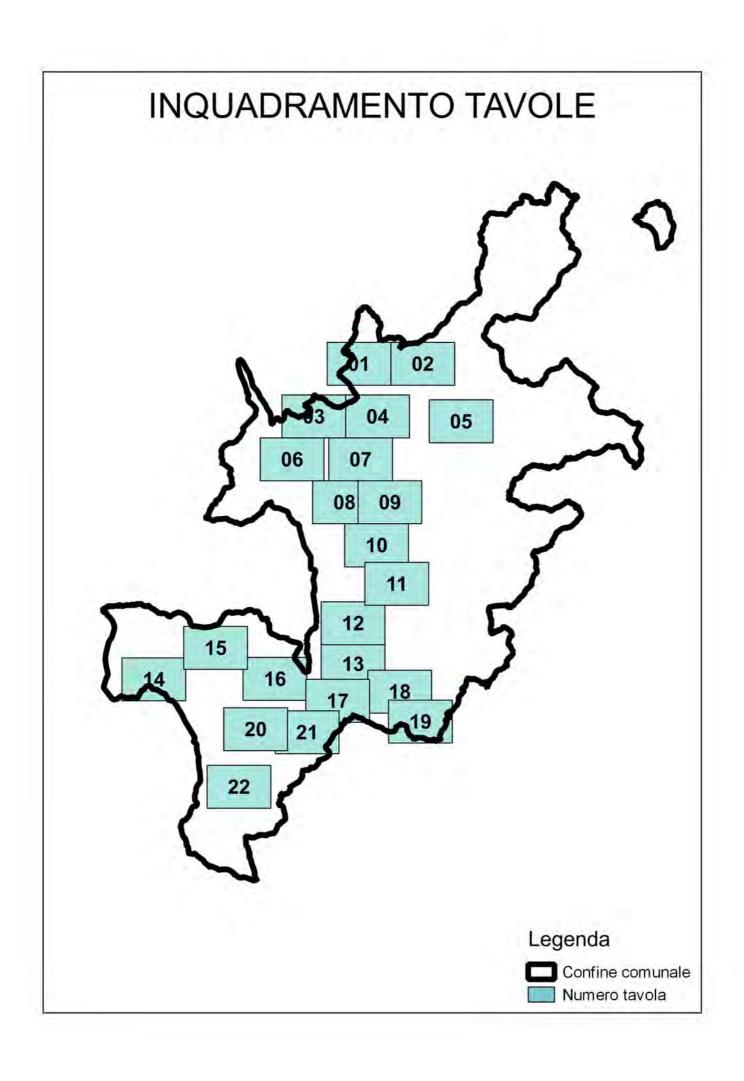




DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30


Via del Forno 21 06012 Città di Castello (PG), Tel. 333/6779368 m.arcaleni@libero.it




DOWN HOLE, SISMICA A RIFRAZIONE ONDE SH E P, HVSR (NAKAMURA), INDAGINI VIBRAZIONALI SU EDIFICI. VS30

ALLEGATO 2

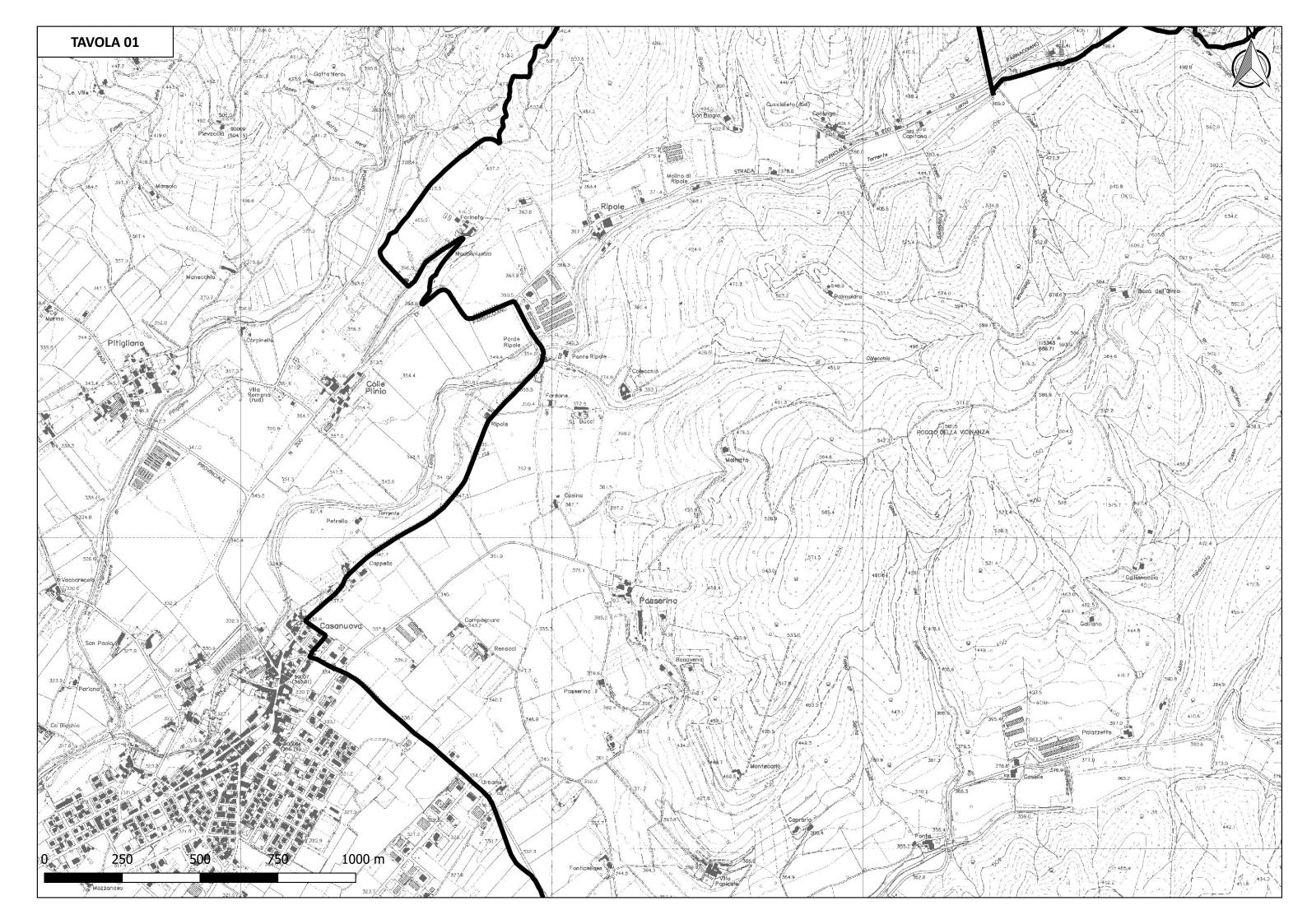
CARTA DELLE INDAGINI

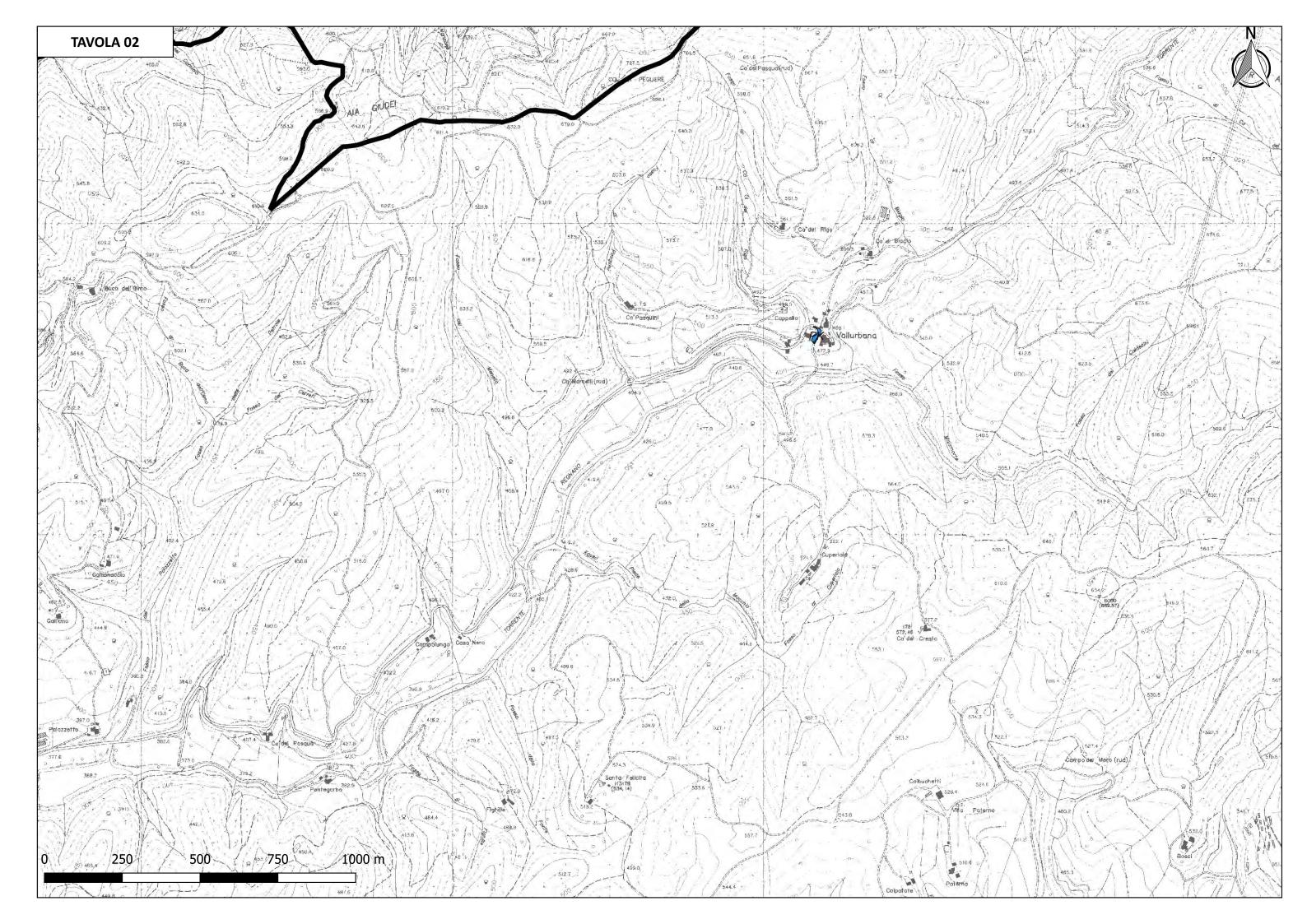
CARTA DELLE INDAGINI

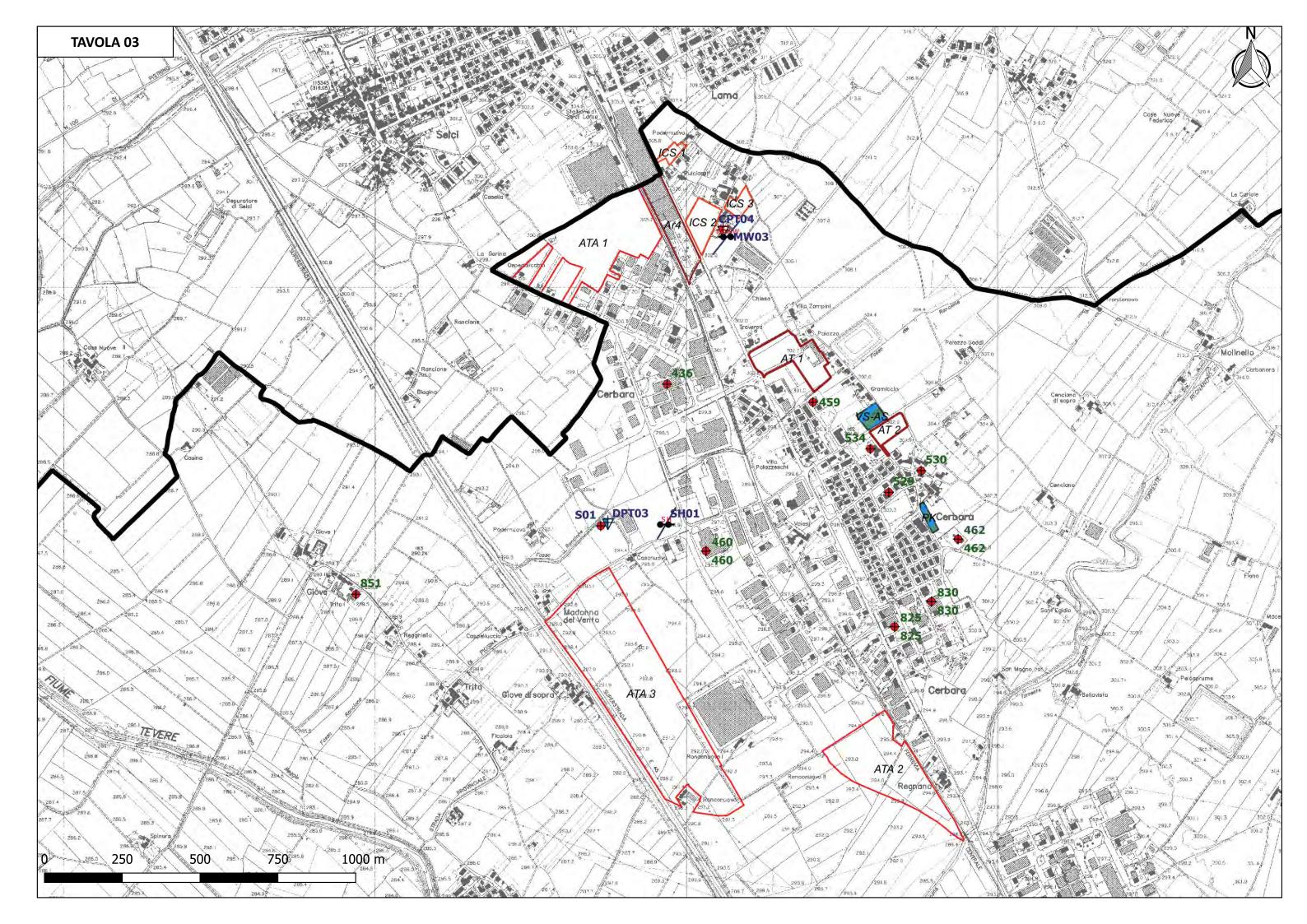
Legenda Confine comunale Database Regione Umbria Parte Operativa **♥** CPT Ambiti di trasformazione per attività - ATA Interventi di completamento semiurbani - ICS **♥** DPT Interventi di completamento urbani - ICU **HVSR** N Ambiti di trasformazione - AT **MASW** Operazioni complesse - OC **SONDAGGIO** Aree per dotazioni a verde pubblico **SCAVO** Aree da recuperare - Ar SH INDAGINI Database Studi di Microzonazione **Database Comune 2018 ▼** CPT CPT **DPT** DPT **HVSR** MASW **HVSR** \mathbb{N}

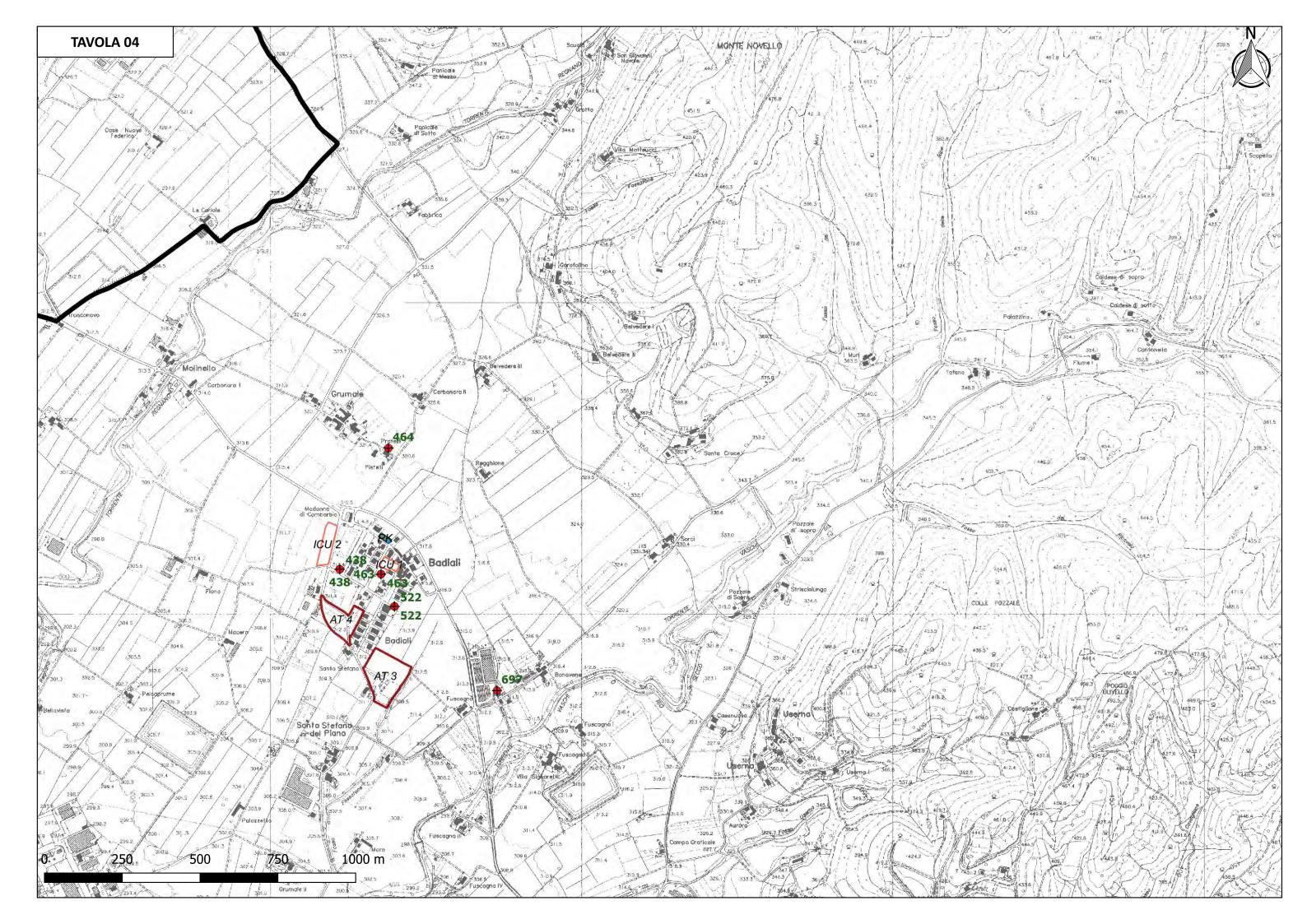
SONDAGGIO

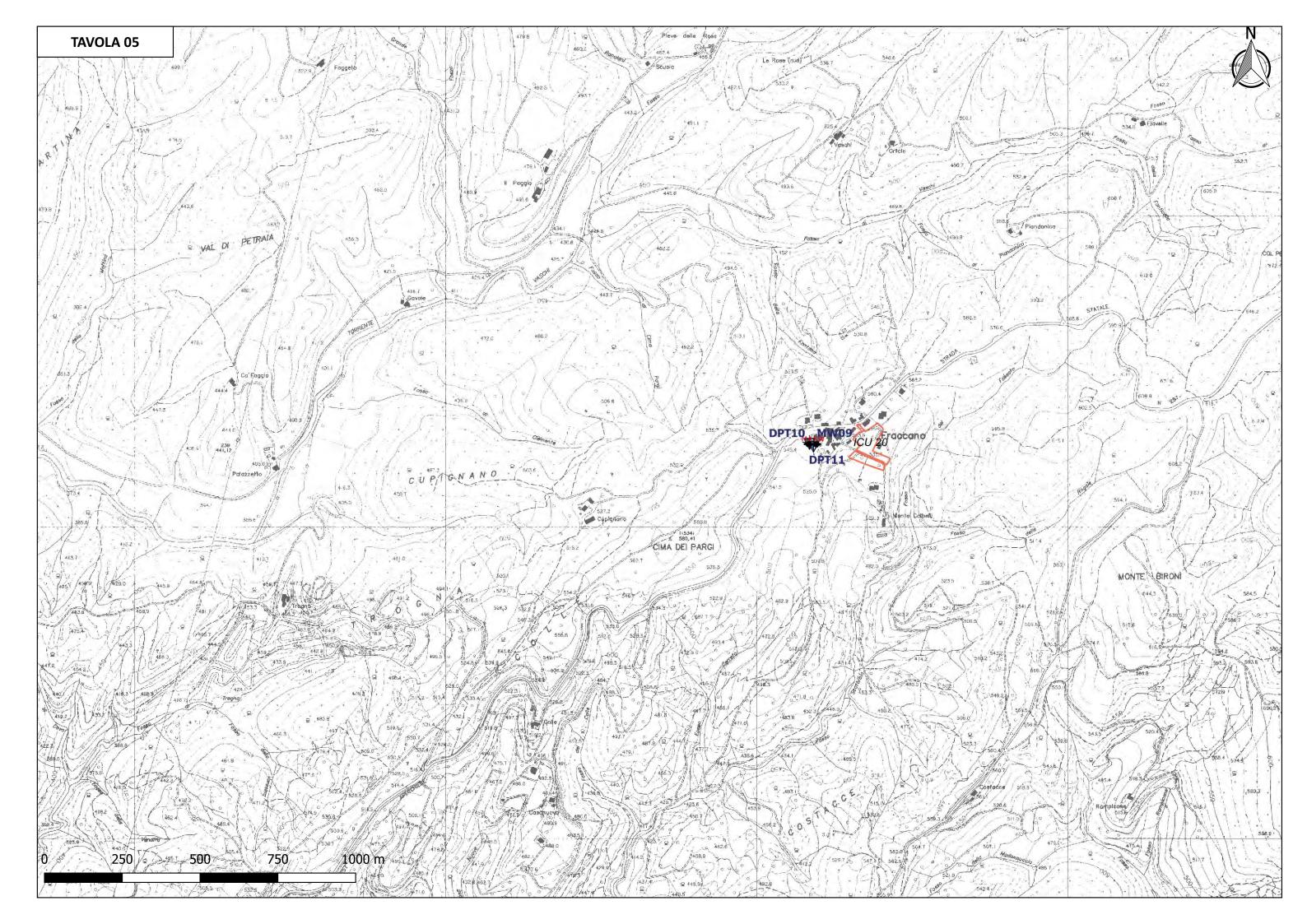
SCAVO

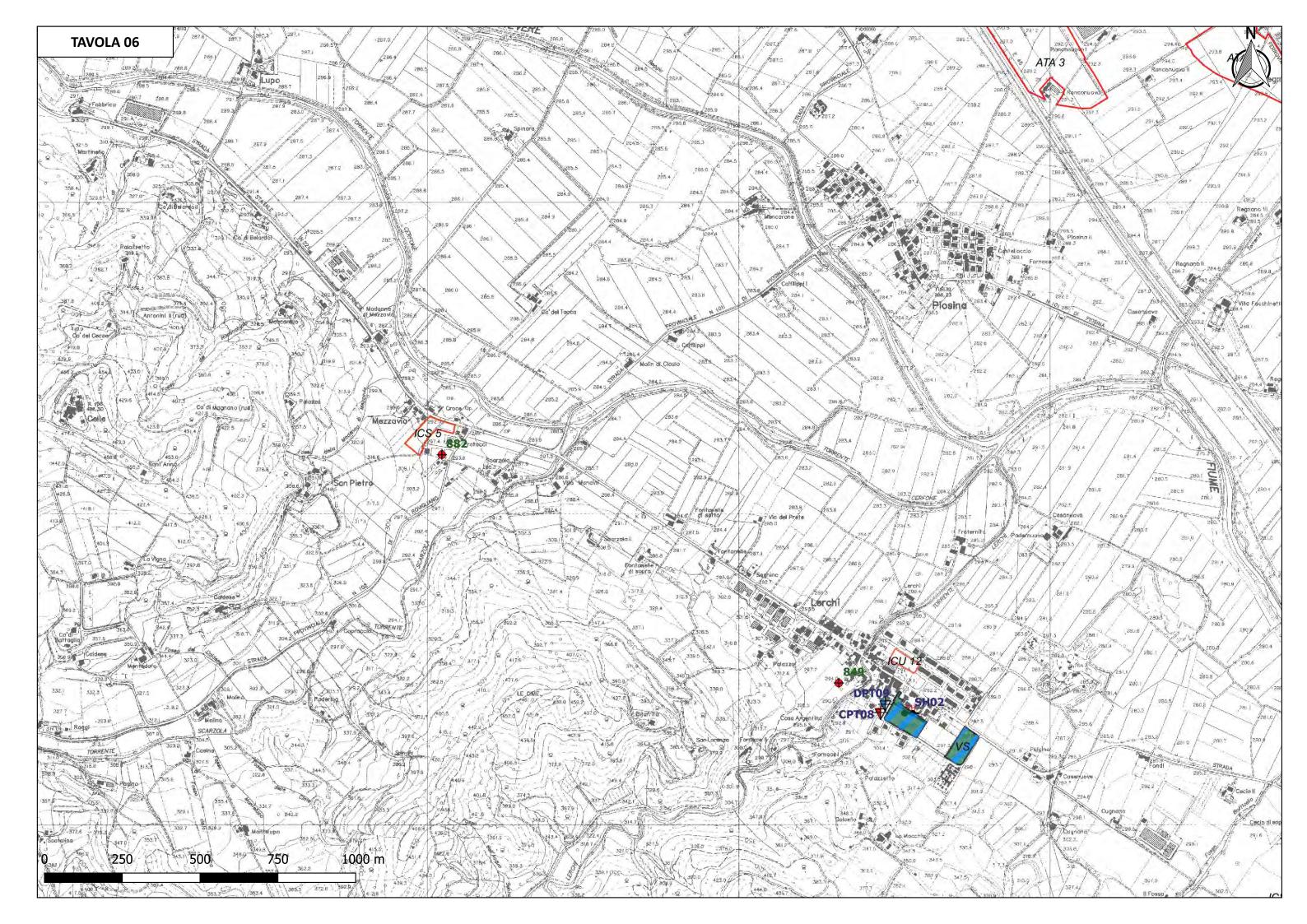

SH

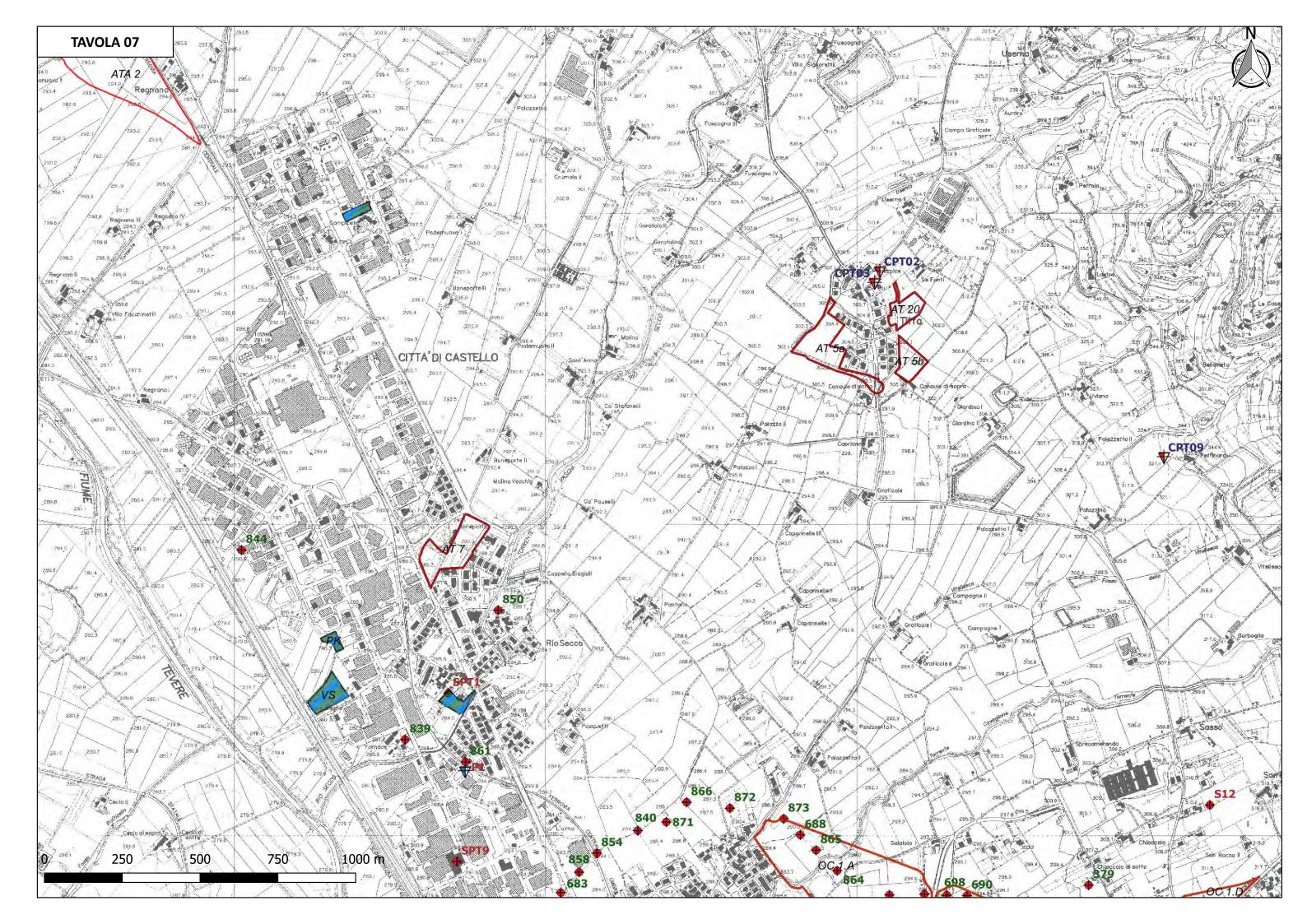

MASW MASW

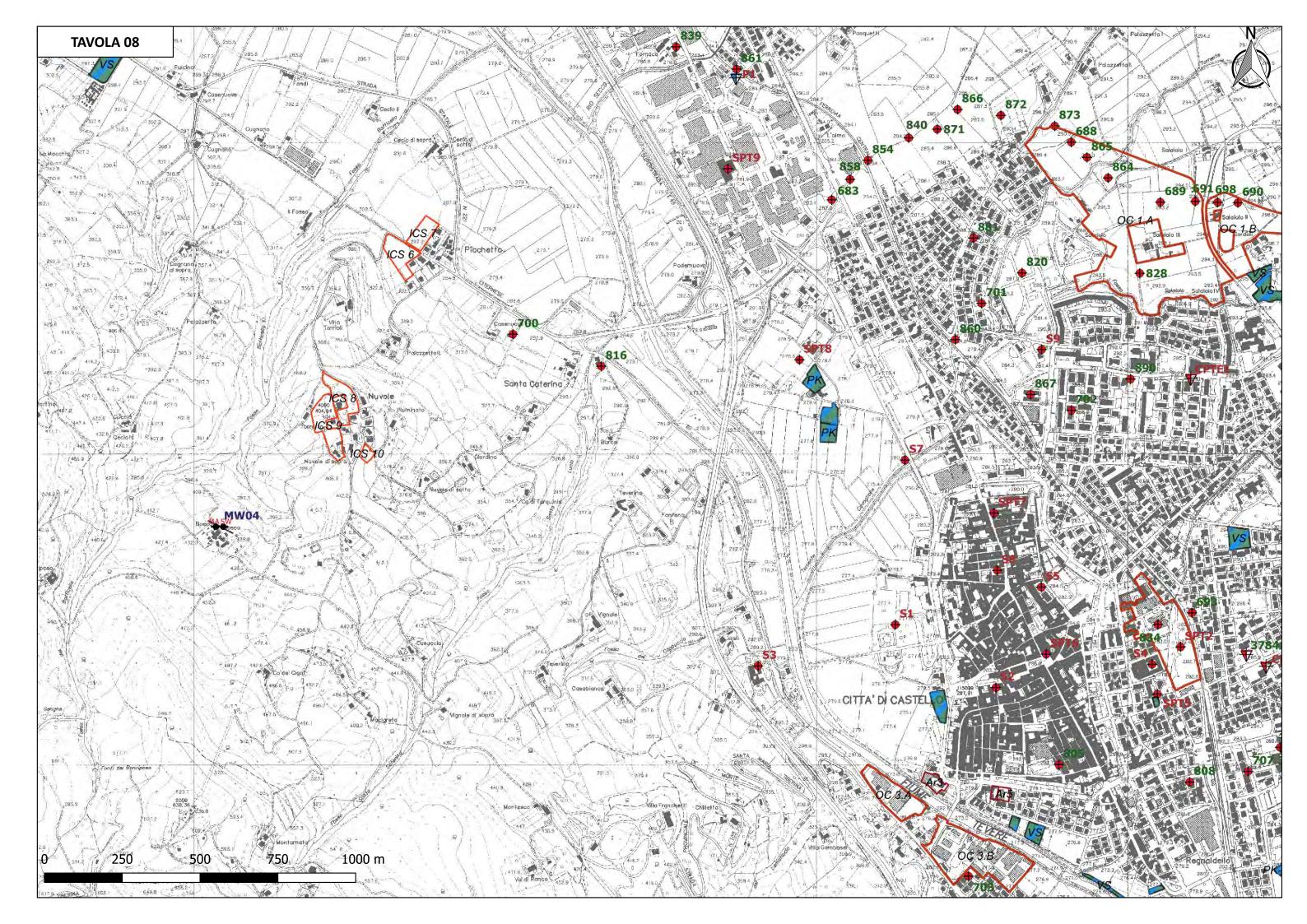

SH

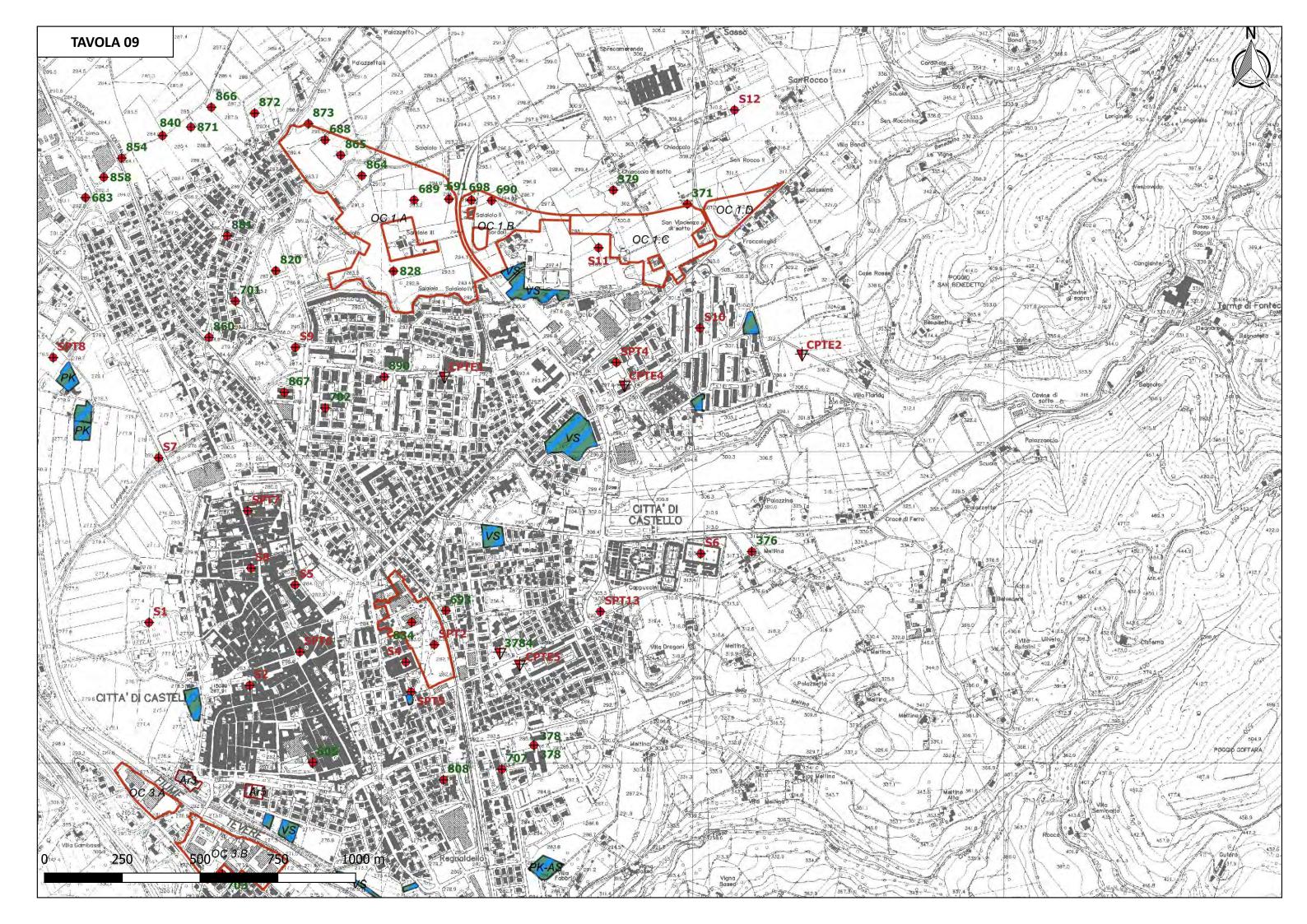

SONDAGGIO

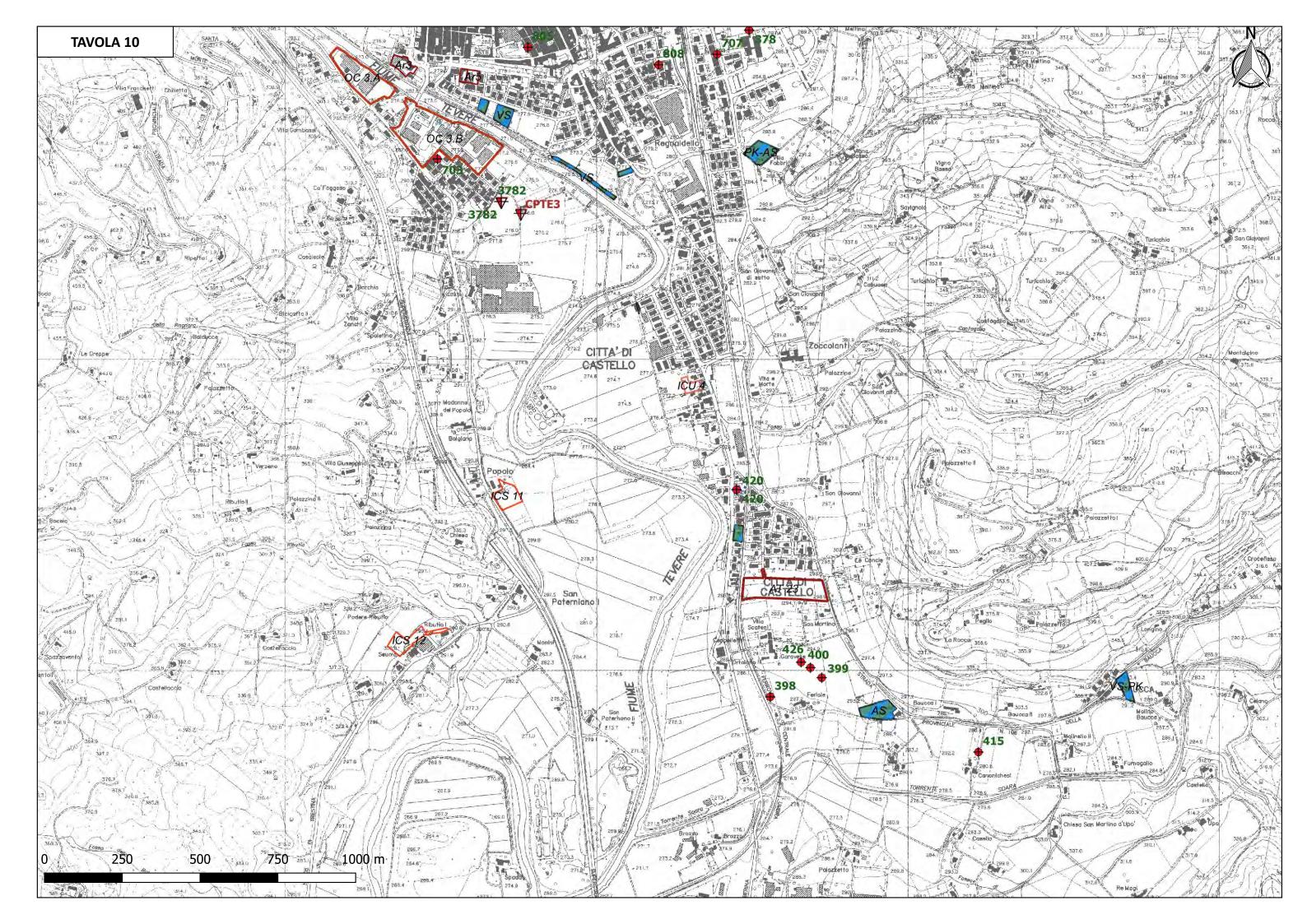

SCAVO

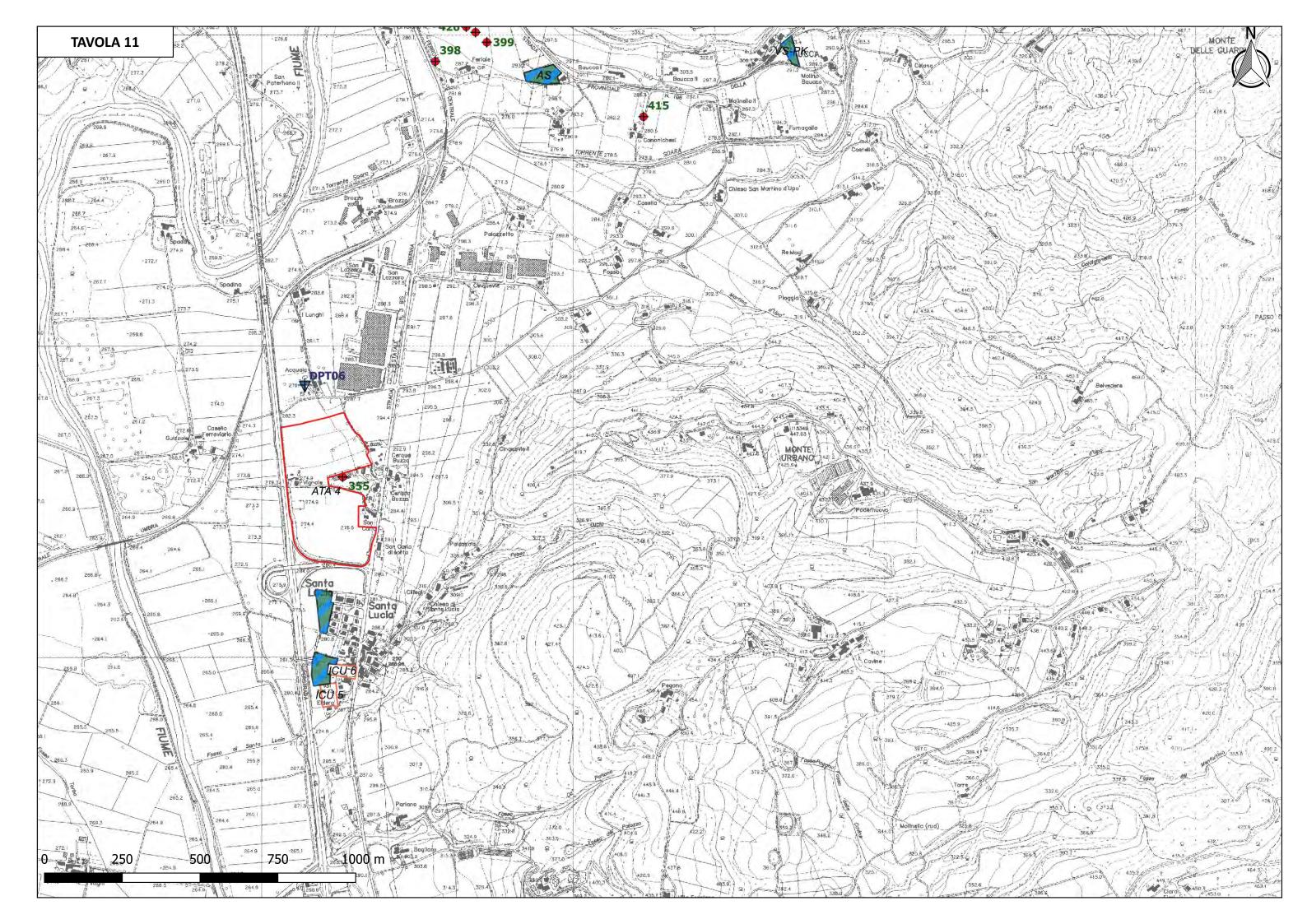


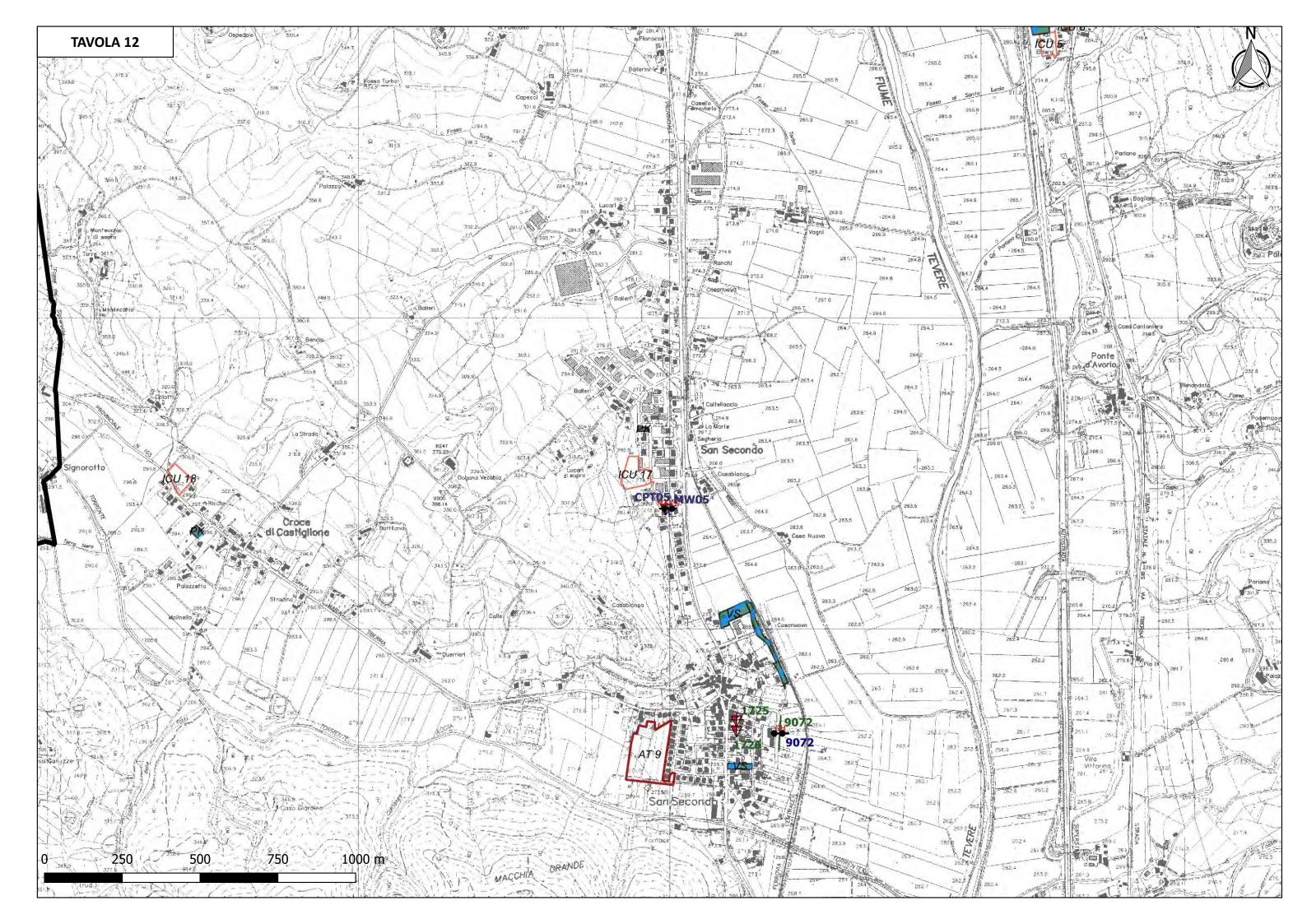


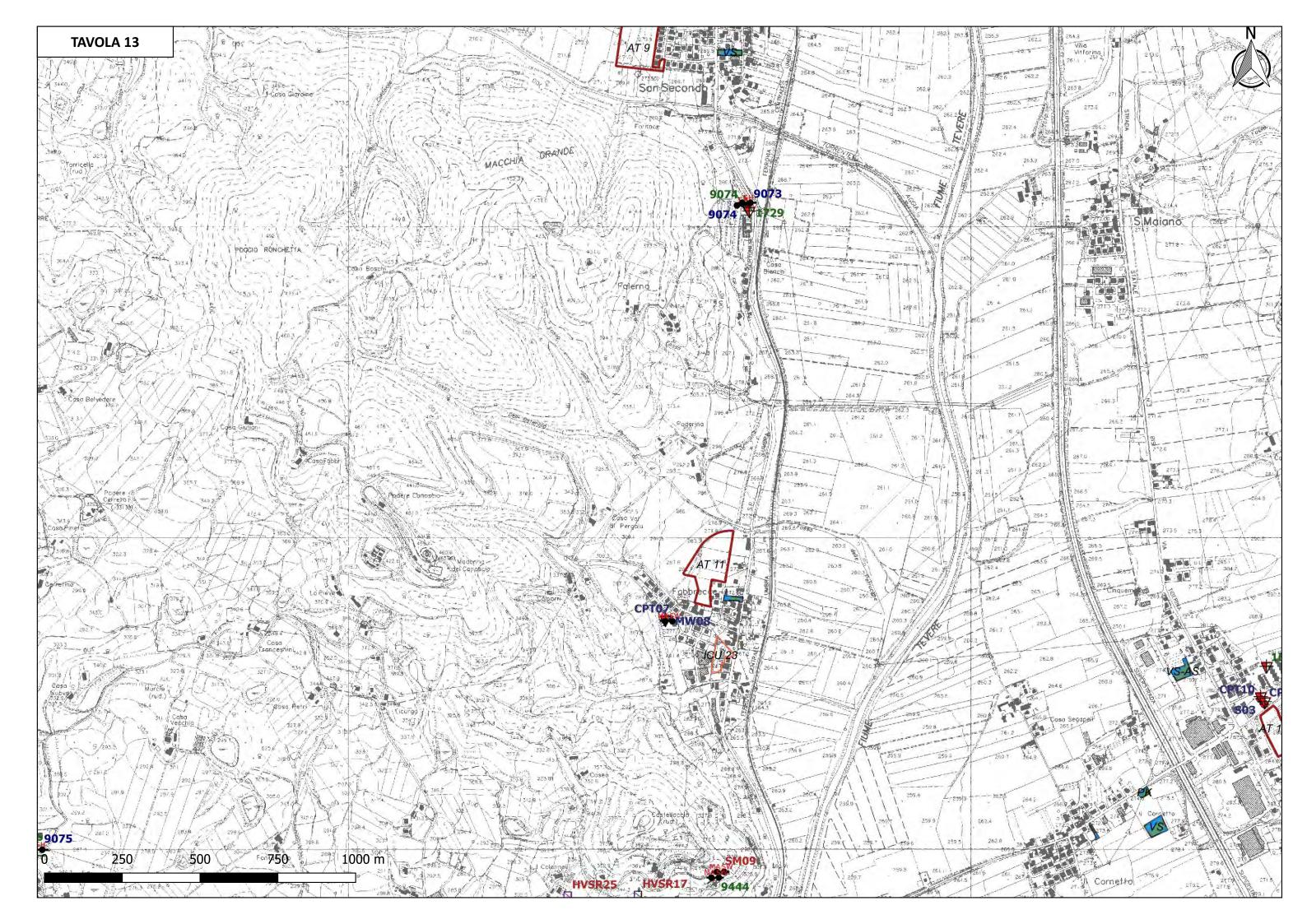


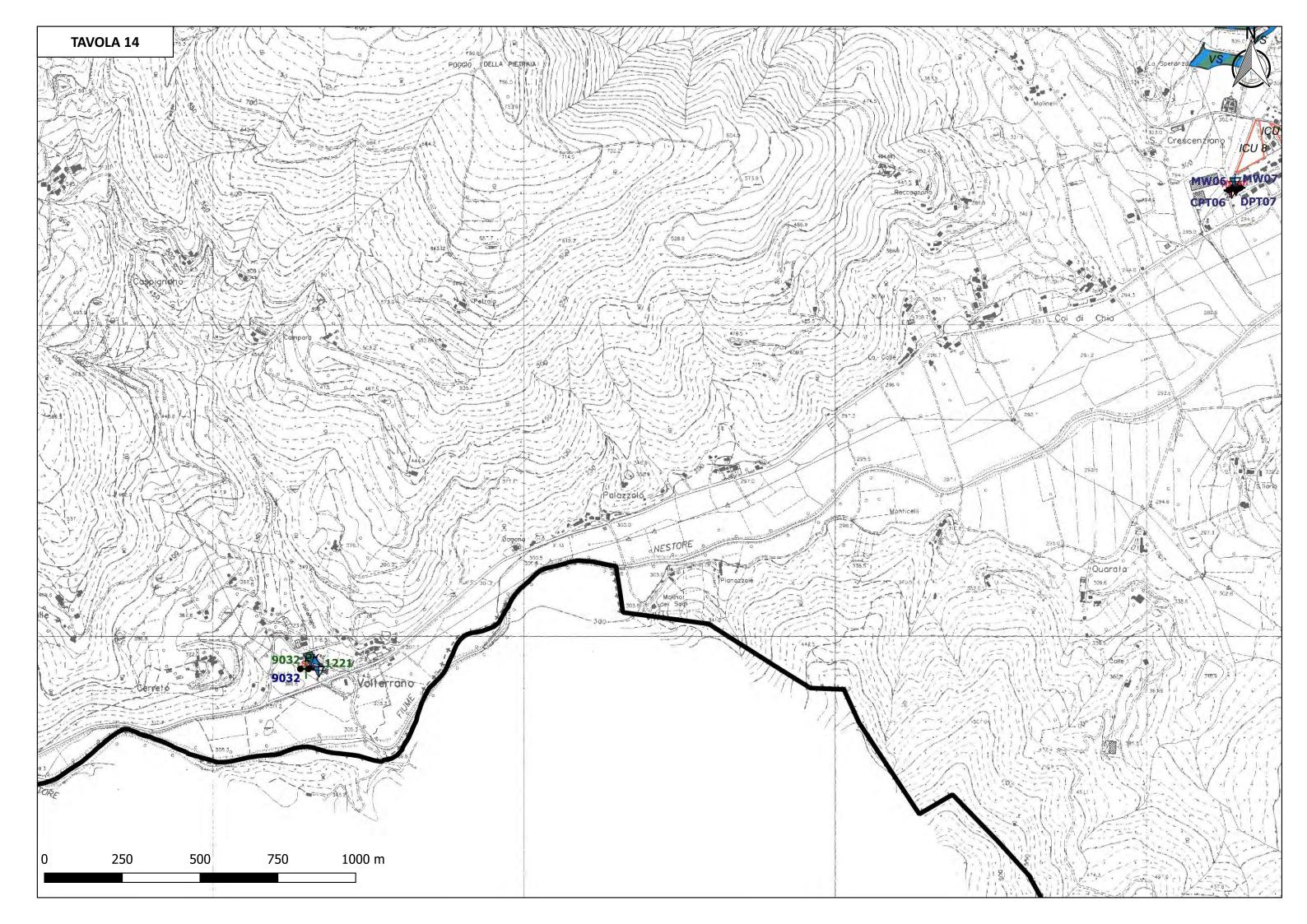


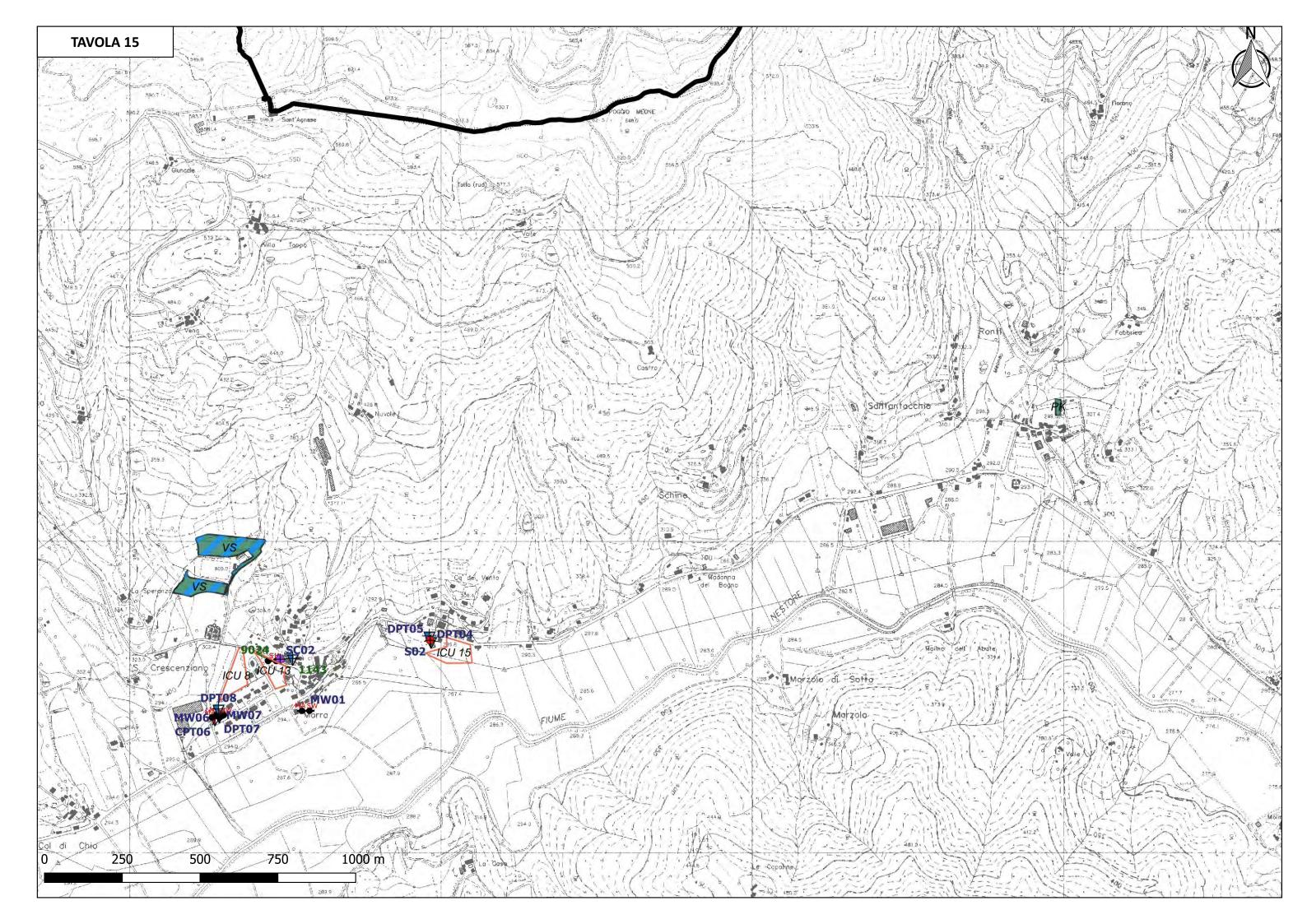


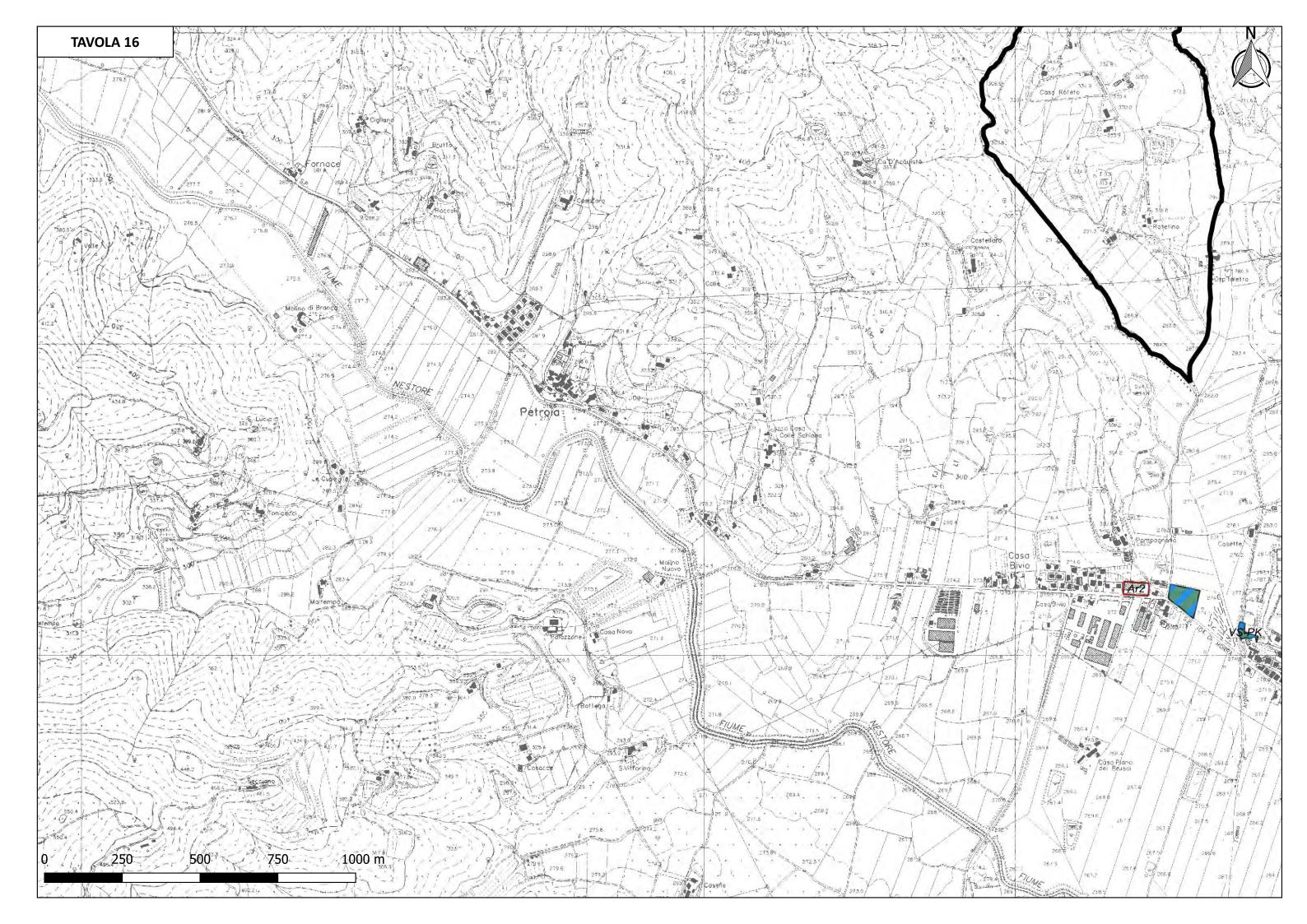


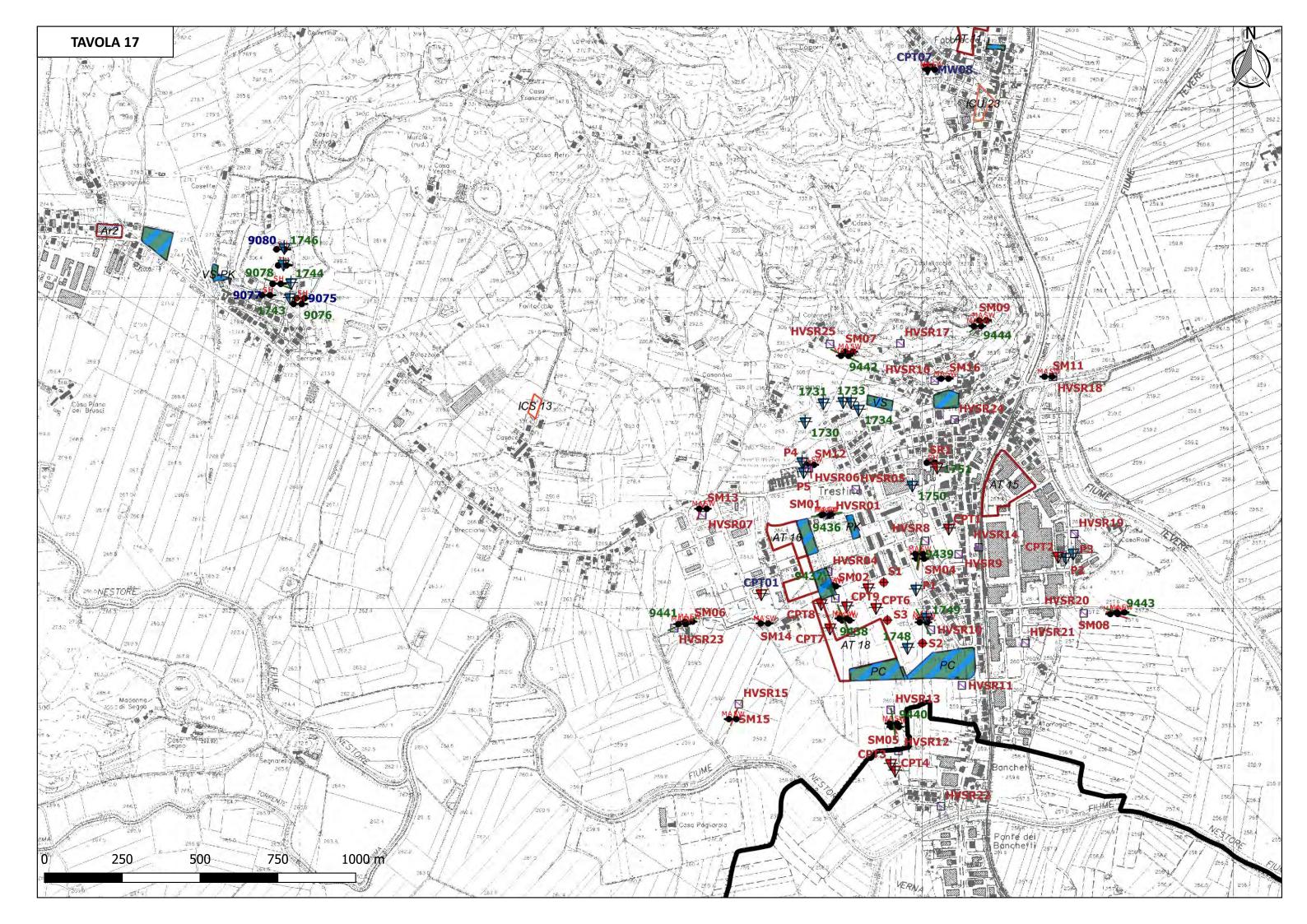


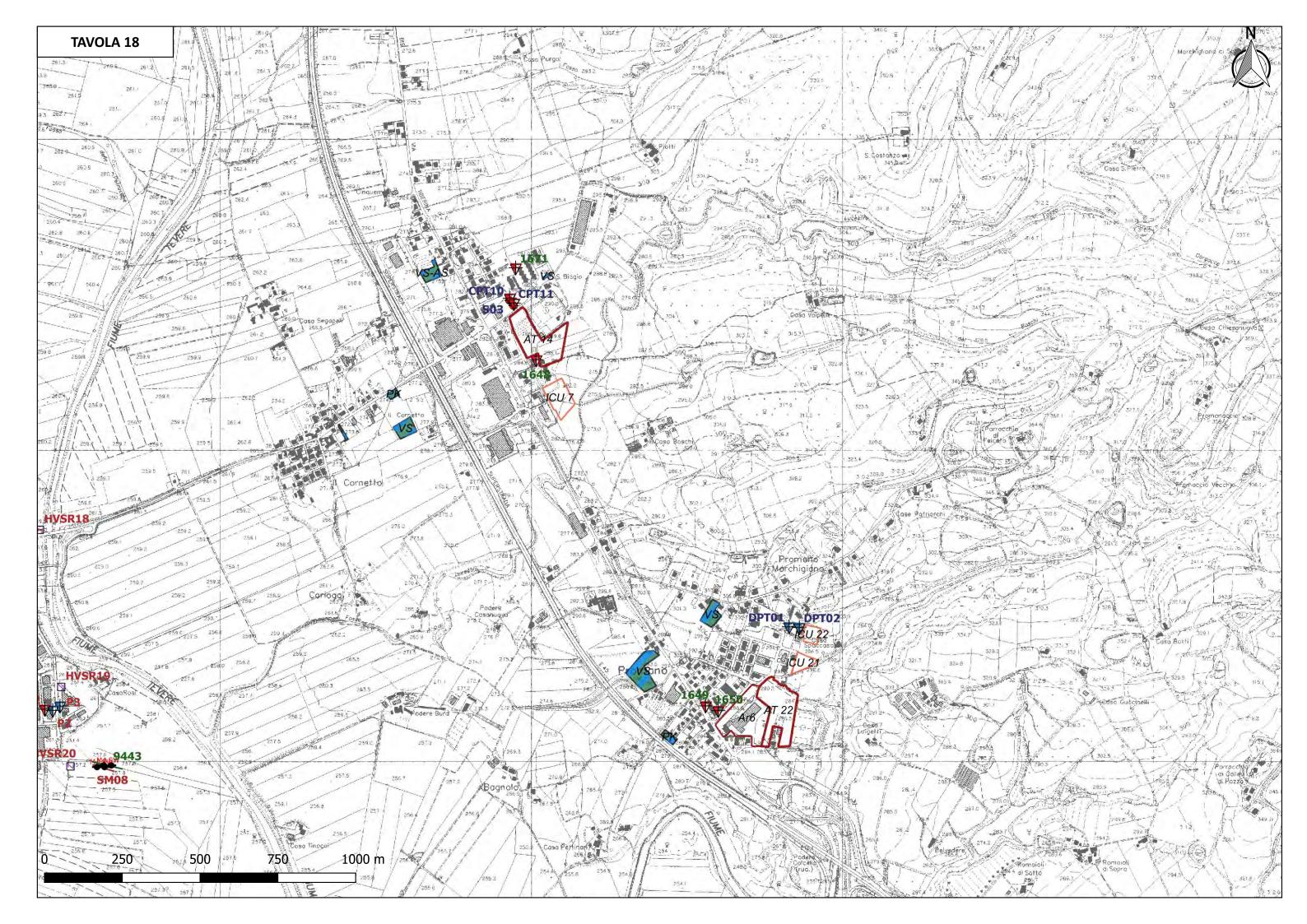


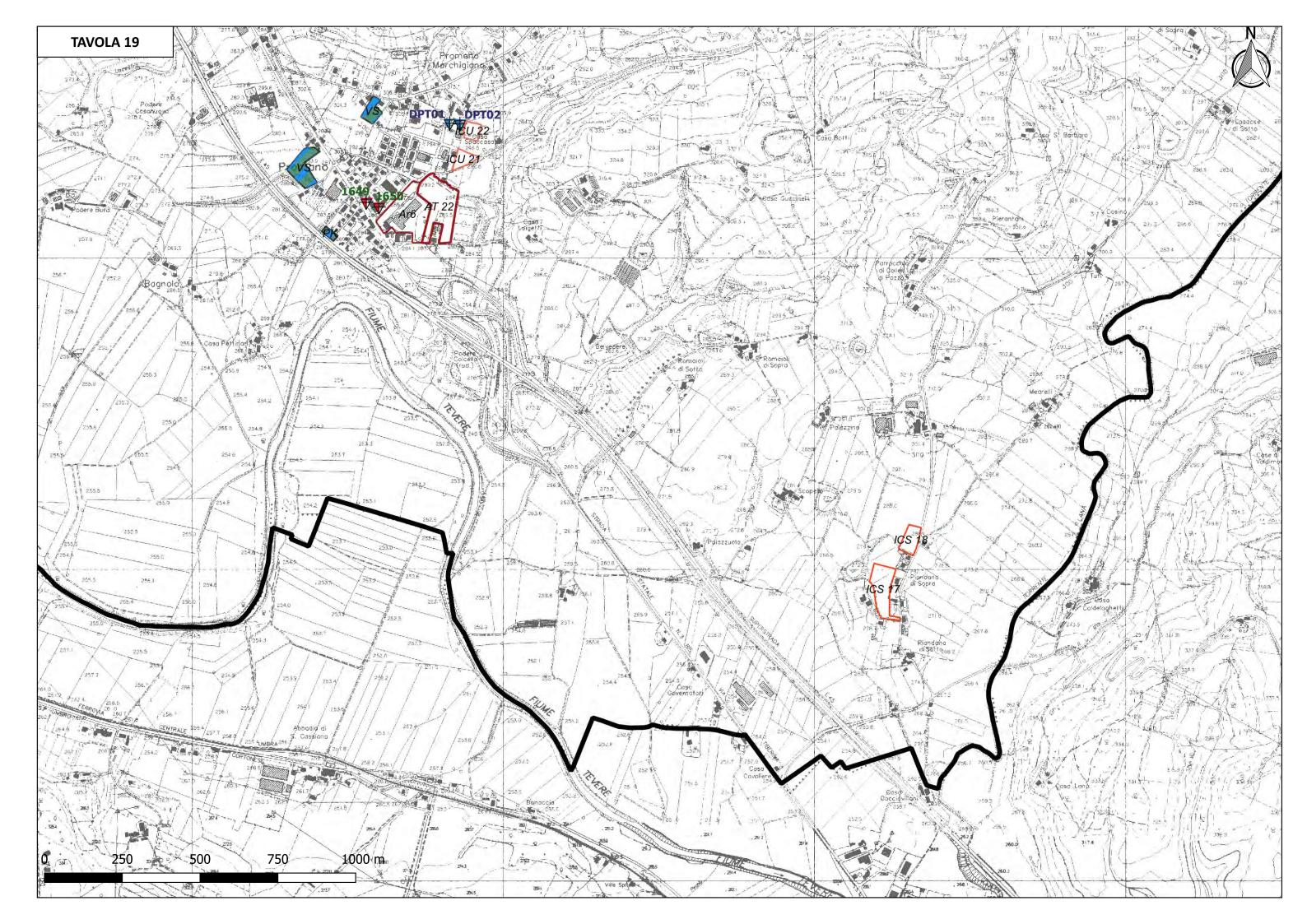


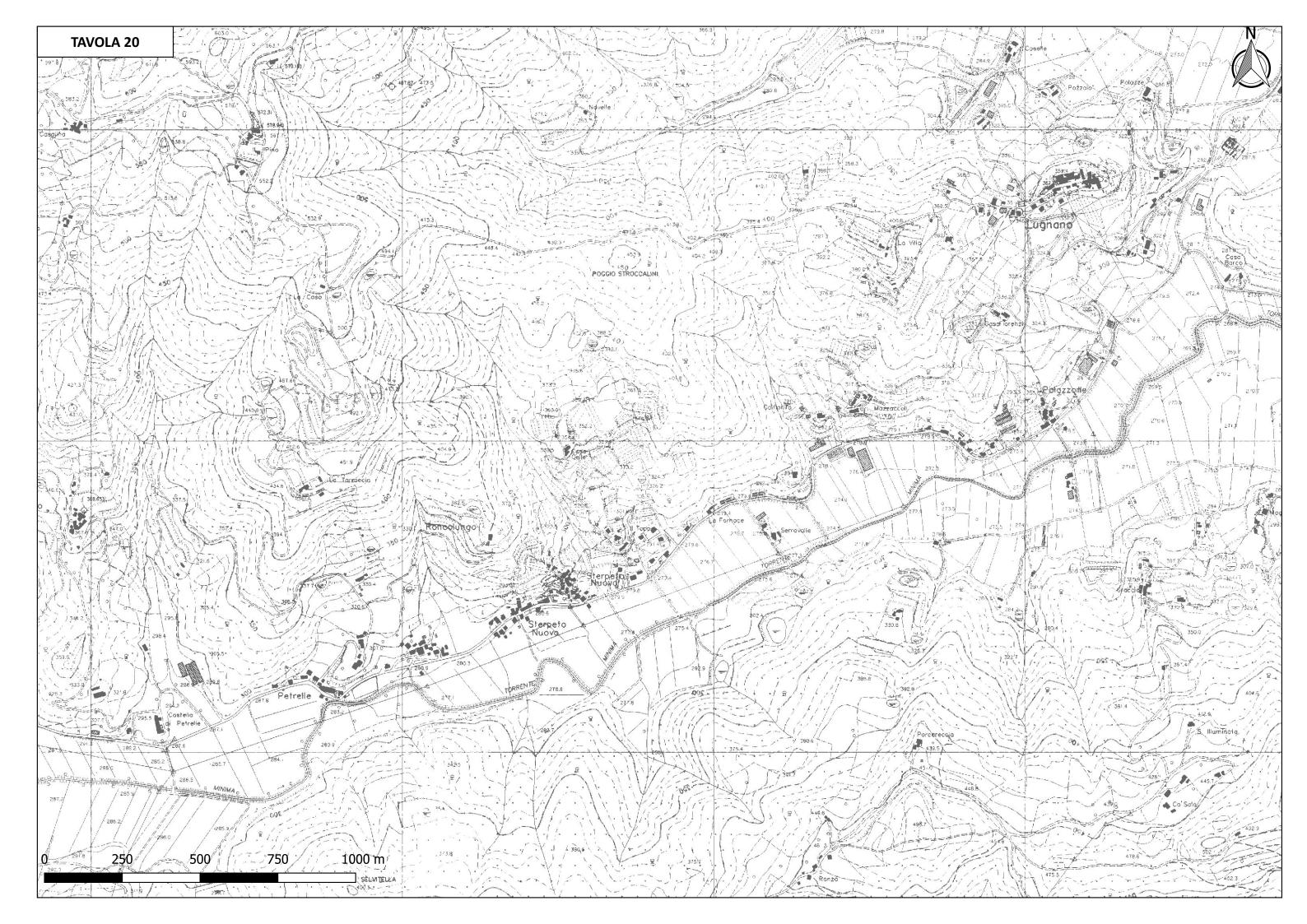




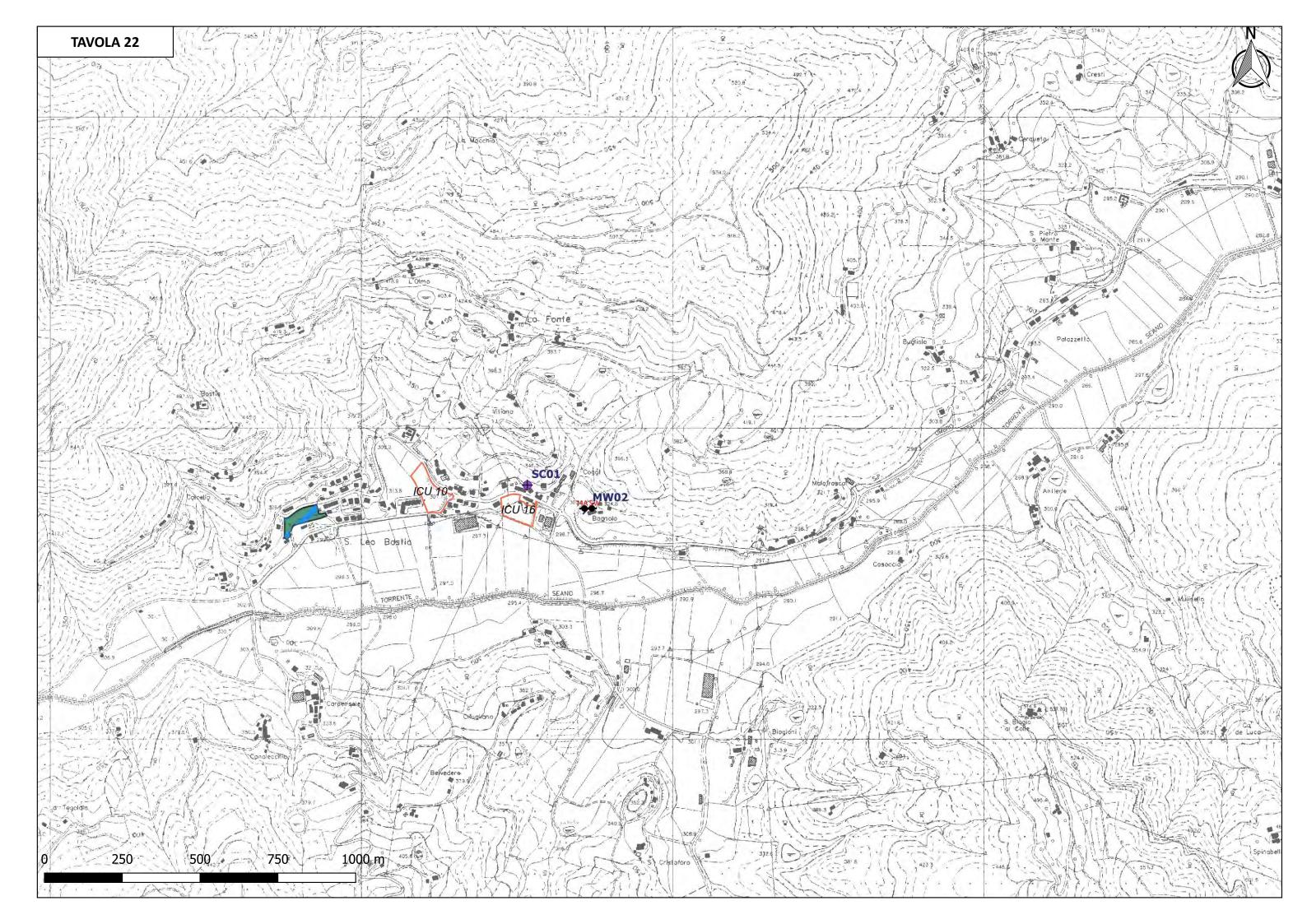


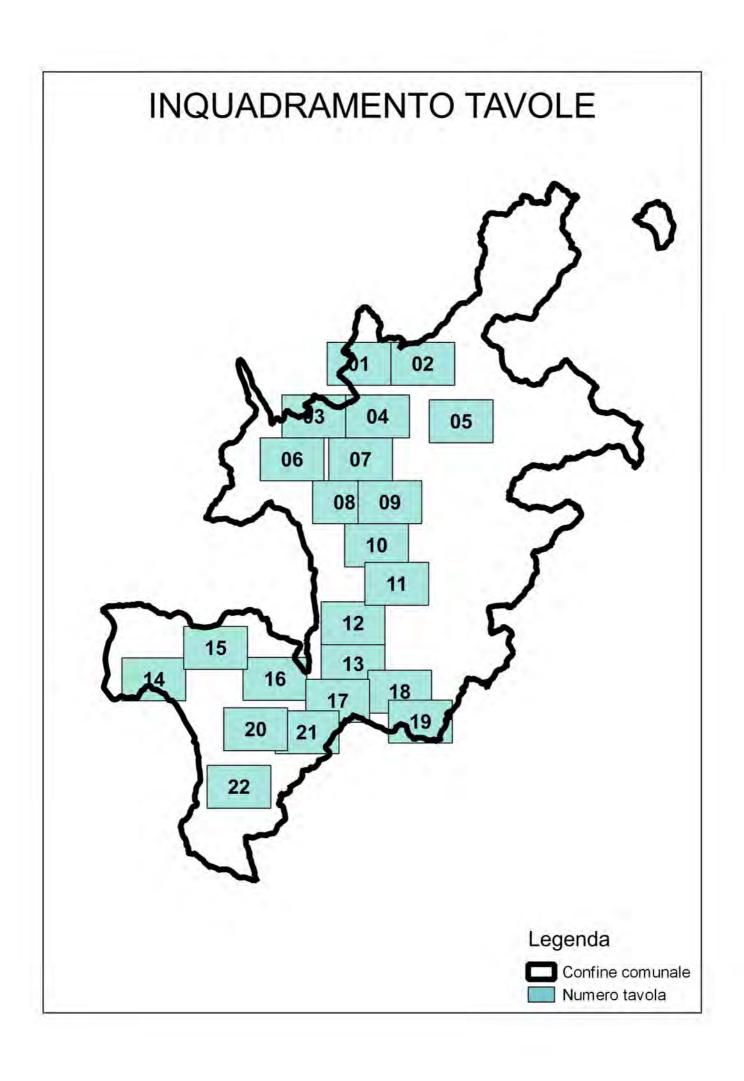


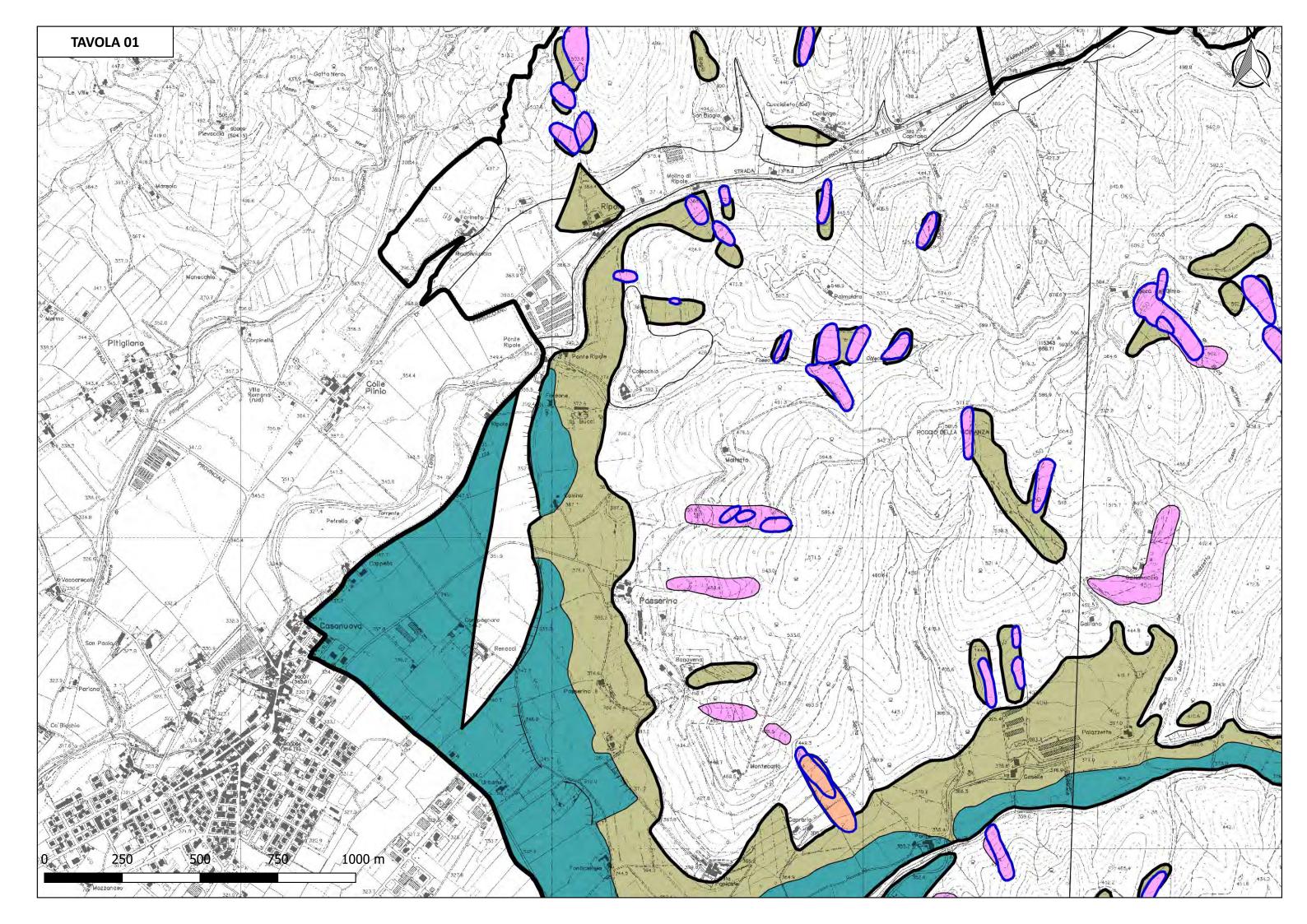


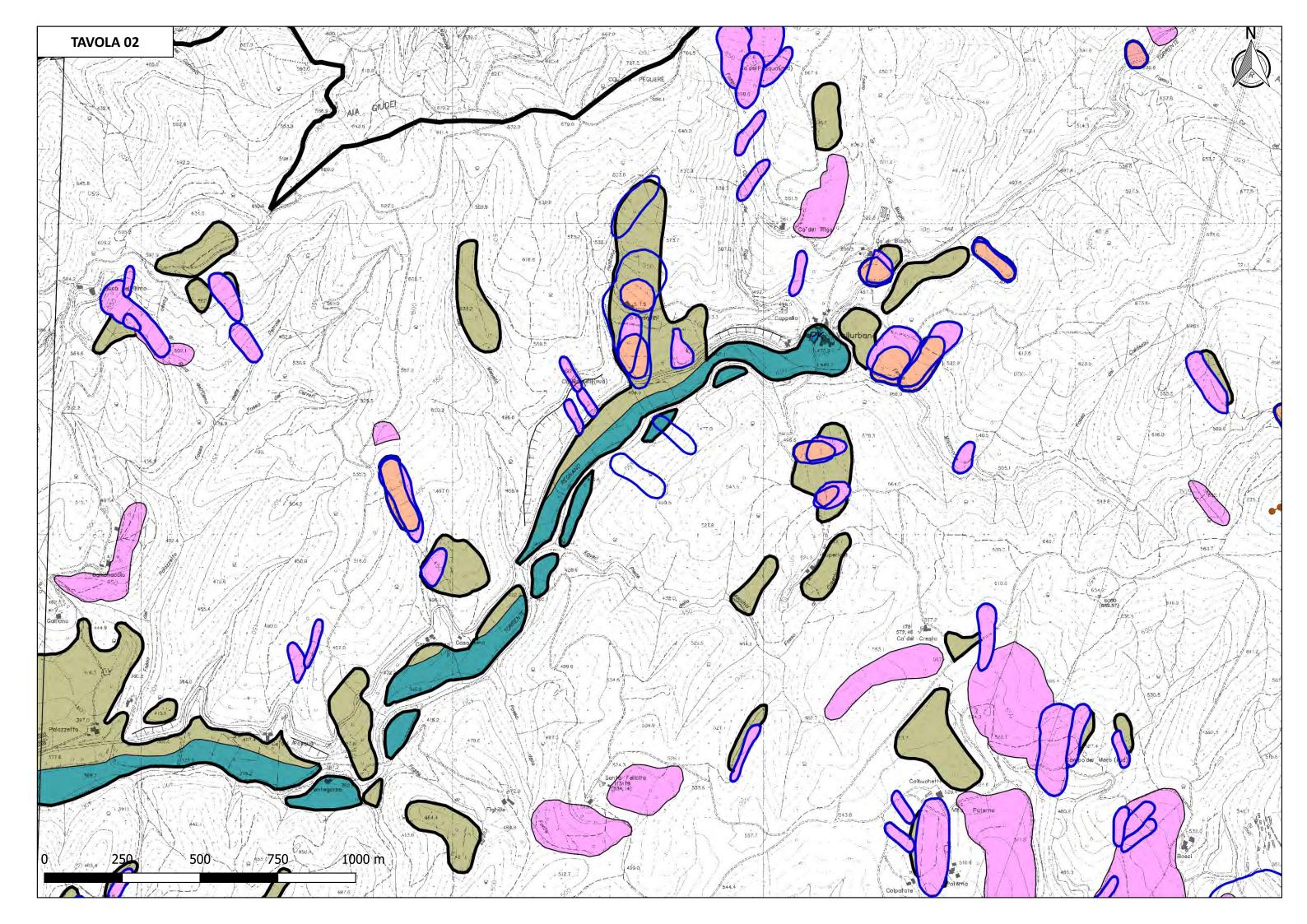


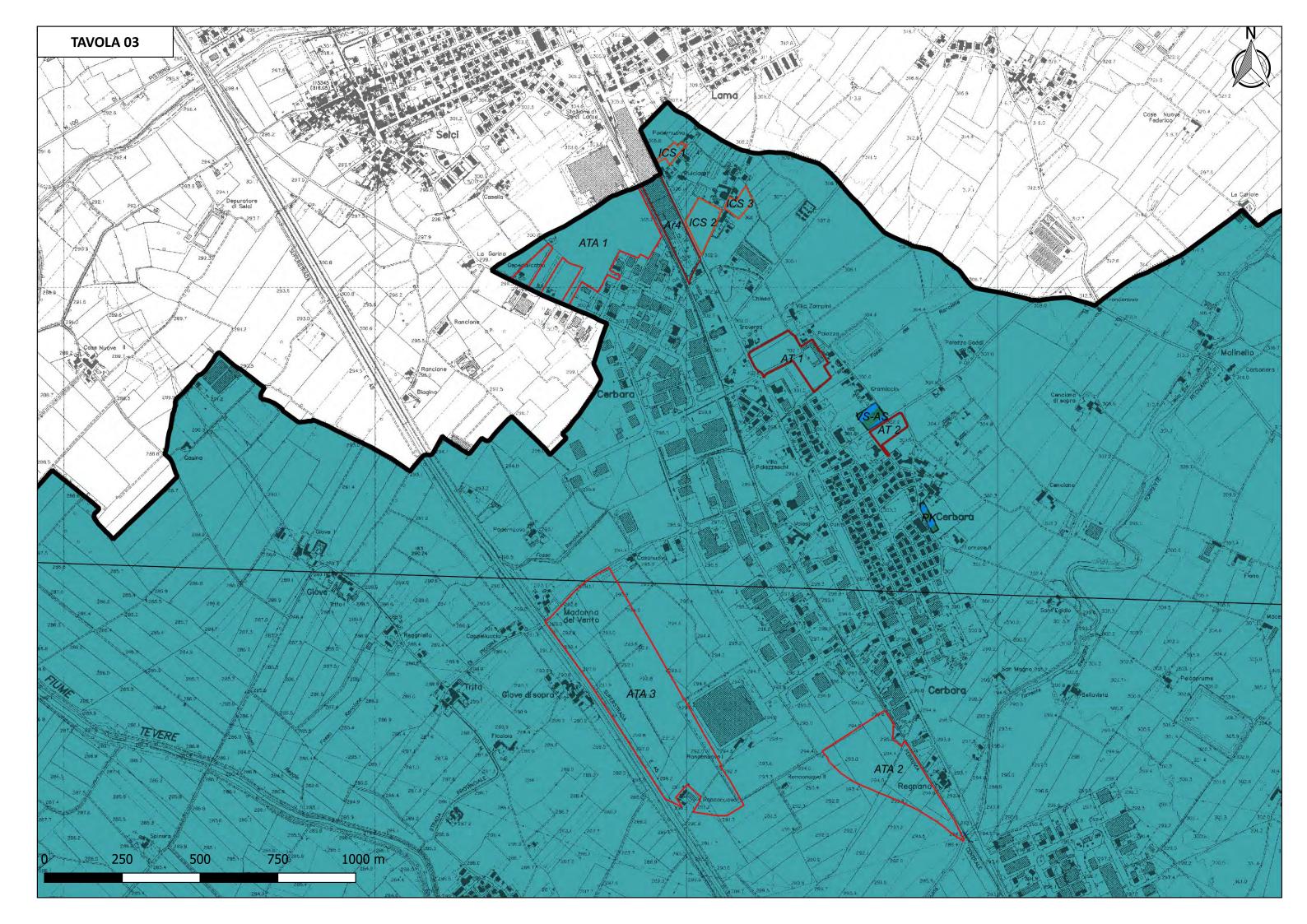


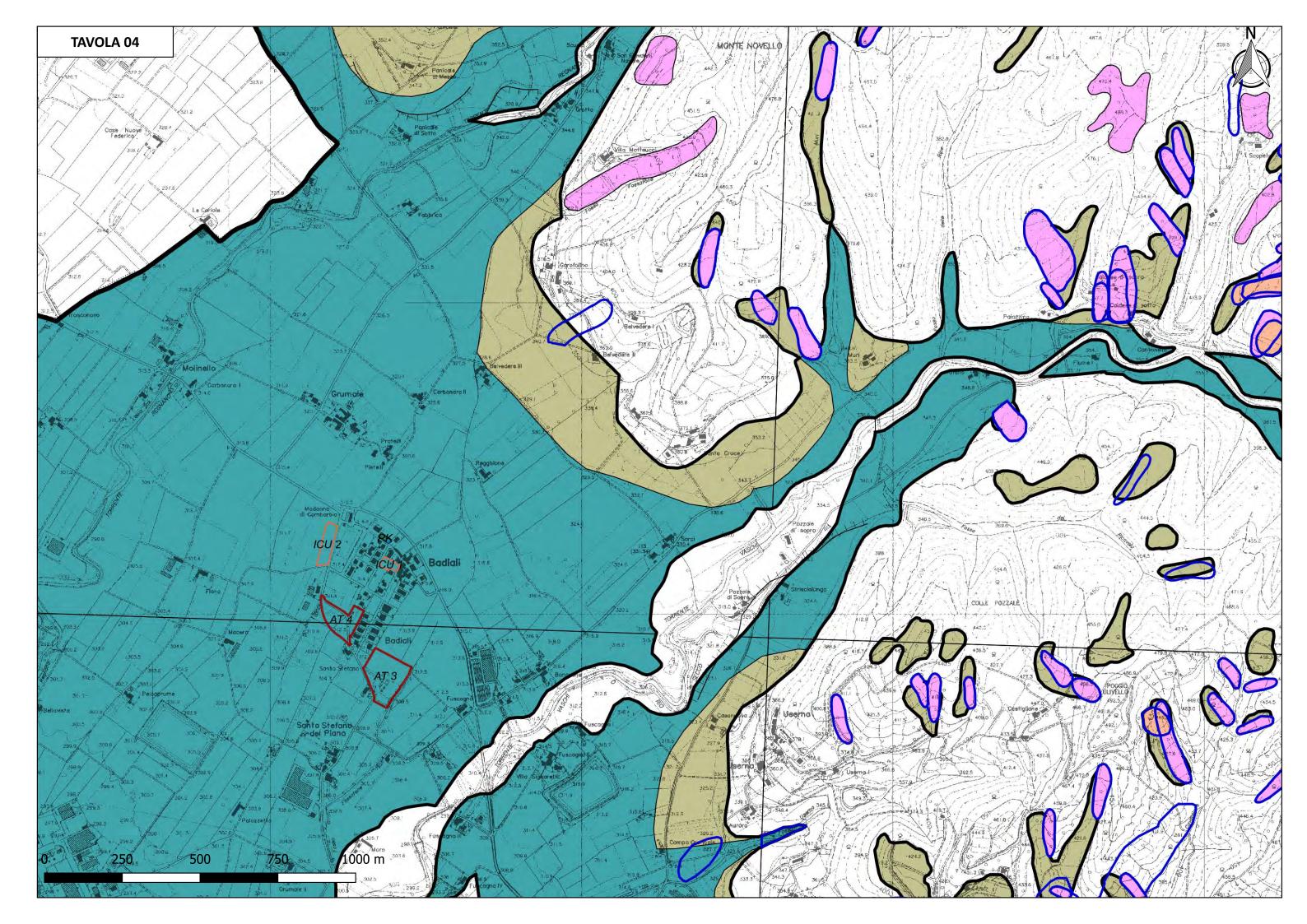


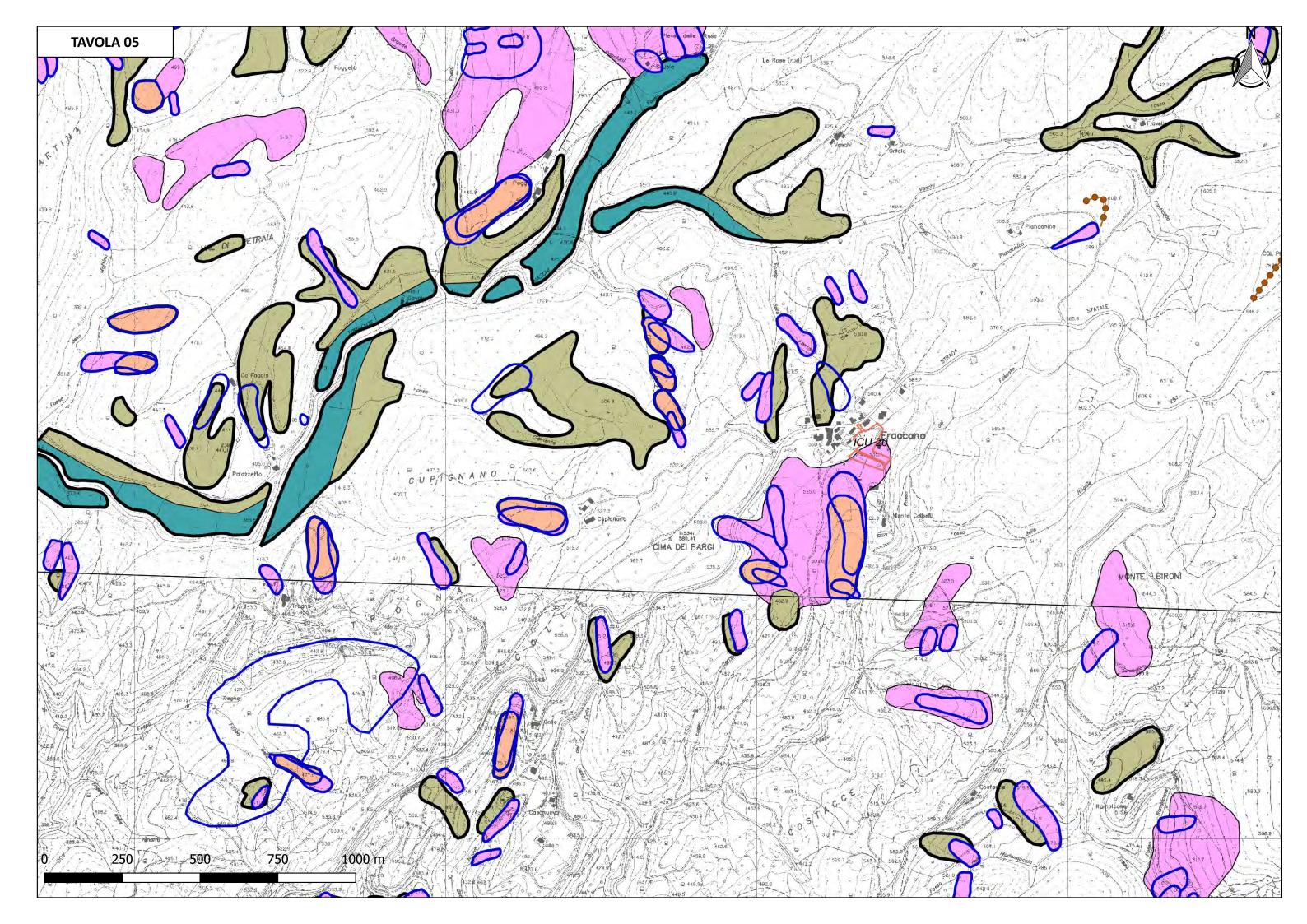





ALLEGATO 3


CARTA DELLE MOPS




CARTA DELLE MOPS

